Свинец металл. Свойства и применение свинца. Свинец и его свойства Свинец амфотерный металл или нет

Содержание статьи

СВИНЕЦ – химический элемент IV группы периодической таблицы. Относительная атомная масса (A r = 207,2) является усредненной из масс нескольких изотопов: 204 Pb (1,4%), 206 Pb (24,1%), 207 Pb (22,1%) и 208 Pb (52,4%). Последние три нуклида – конечные продукты естественных радиоактивных превращений урана , актиния и тория. Известно также более 20 радиоактивных изотопов свинца, из которых наиболее долгоживущие – 202 Pb и 205 Pb (с периодами полураспада 300 тысяч и 15 млн. лет). В природе образуются также и короткоживущие изотопы свинца с массовыми числами 209, 210, 212 и 214 с периодами полураспада соответственно 3,25 ч, 27,1 года, 10,64 ч и 26,8 мин. Соотношение различных изотопов в разных образцах свинцовых руд может несколько различаться, что не дает возможности определить для свинца значение A r с большей точностью.

В земной коре свинца немного – 0,0016% по массе, но этот один из самых тяжелых металлов распространен гораздо больше, чем его ближайшие соседи – золото, ртуть и висмут. Это связано с тем, что разные изотопы свинца являются конечными продуктами распада урана и тория, так что содержание свинца в земной коре медленно увеличивалось в течение миллиардов лет.

Известно много рудных месторождений, богатых свинцом, причем металл легко выделяется из минералов. Всего известно более ста свинцовых минералов. Из них основные – галенит (свинцовый блеск) PbS и продукты его химических превращений – англезит (свинцовый купорос) PbSO 4 и церуссит («белая свинцовая руда») PbCO 3 . Реже встречаются пироморфит («зеленая свинцовая руда») PbCl 2 ·3Pb 3 (PO 4) 2 , миметит PbCl 2 ·3Pb 3 (AsO 4) 2 , крокоит («красная свинцовая руда») PbCrO 4 , вульфенит («желтая свинцовая руда») PbMoO 4 , штольцит PbWO 4 . В свинцовых рудах часто находятся также другие металлы – медь, цинк, кадмий, серебро, золото, висмут и др. В месте залегания свинцовых руд этим элементом обогащена почва (до 1% Pb), растения и воды.

В сильноокислительной щелочной среде степей и пустынь возможно образование диоксида свинца – минерала платтнерита. И исключительно редко встречается самородный металлический свинец.

История.

Происхождение слова «свинец» неясно. В старину свинец не всегда четко отличали от олова. В большинстве славянских языков (болгарском, сербскохорватском, чешском, польском) свинец и называется оловом. Наш же «свинец» встречается только в языках балтийской группы: svinas (литовский), svin (латышский). У некоторых горе-переводчиков это приводило к забавным недоразумениям, например, к «оловянным аккумуляторам» в автомобилях. Английское название свинца lead и голландское lood, возможно, связаны с нашим «лудить». Латинское же plumbum (тоже неясного происхождения) дало английское слово plumber – водопроводчик (когда-то трубы зачеканивали мягким свинцом. И еще одна путаница, связанная со свинцом. Древние греки называли свинец «молибдос» (название сохранилось и в новогреческом языке). Отсюда – латинское molibdaena: так в средние века называли и свинцовый блеск PbS, и более редкий молибденовый блеск (MoS 2), и другие похожие минералы, оставлявшие черный след на светлой поверхности. Такой же след оставляли графит и сам свинец. Тонкими свинцовыми стержнями можно было писать на пергаменте; недаром по-немецки карандаш – Bleistift, т.е. свинцовый стержень.

Свинец вместе с золотом, серебром, медью, оловом, железом и ртутью входит в семерку металлов, известных с глубокой древности. Эти металлы сопоставлялись с известными тогда планетами (свинцу соответствовал Сатурн). Считается, что впервые люди выплавили свинец из руд 8 тысяч лет назад. Раскопки в Древнем Египте обнаружили изделия из серебра и свинца в захоронениях до династического периода. К этому же времени относятся аналогичные находки, сделанные в Месопотамии. Совместные находки серебряных и свинцовых изделий не удивительны. Еще в доисторические времена внимание людей привлекли красивые тяжелые кристаллы свинцового блеска. Залежи этого минерала находили в горах Армении, в центральных районах Малой Азии. А минерал галенит часто содержит значительные примеси серебра. Если положить куски этого минерала в костер, то сера выгорит и потечет расплавленный свинец (древесный уголь препятствует окислению свинца). Уже за много тысячелетий до новой эры в Месопотамии, Египте из него отливали статуи.

В VI в. до н.э. богатые залежи галенита были обнаружены в Лаврионе – гористой местности недалеко от Афин. Во времена пунических войн (264–146 до н.э.) на территории современной Испании работали многочисленные свинцовые шахты, которые были заложены греками и финикийцами. Позднее они разрабатывались римлянами; римские инженеры использовали свинец для изготовления труб древнего водопровода. Древнегреческий историк Геродот (V в. до н.э.) писал о методе укрепления железных и бронзовых скоб в каменных плитах путем заливки отверстий легкоплавким свинцом. Позднее при раскопках Микен нашли свинцовые скобы в каменных стенах.

При получении свинца античные металлурги сначала прокаливали руду, при этом шли реакции

2PbS + 3O 2 ® 2PbO + 2SO 2 и PbS + 2O 2 ® PbSO 4 . Затем температуру повышали, что приводило к выплавке свинца:

PbS + 2PbO ® 3Pb + SO 2 ; PbS + PbSO 4 ® 2Pb + 2SO 2 . Первые плавильные печи, сделанные из глины и камней, были весьма примитивны. Их старались установить на склонах холмов, где дуют ветры, помогающие обжигу. Выплавленный свинец, как правило, содержал серебро – иногда до 0,5% и более. При медленном охлаждении такого расплава сначала кристаллизуется чистый свинец, а жидкость обогащается серебром – примерно до 2%. Для выделения серебра использовали метод купелирования: окисляли расплавленный свинец в пористом глиняном сосуде – купели, а его оксид затем снова восстанавливали до металла. Механизм этого процесса был изучен только в 1833.

Использовали свинец и для очистки золота и серебра методом купелирования. Для этого подлежащий очистке драгоценный металл сплавляли со свинцом. Свинец и другие примеси легко окислялись при высокой температуре; образующиеся оксиды сдувались струей воздуха, а частично впитывались в поры купели, а на дне оставался слиток чистого серебра или золота. Оксид свинца затем снова могли превратить в металл, нагревая его с древесным углем. Археологические находки в Уре и Трое свидетельствуют, что купелирование было известно на северо-западе Малой Азии уже в первой половине III тыс. до н.э. А греческим умельцам из добытого в Лаврионе свинца удавалось извлечь почти все серебро: по современным анализам его оставалось в свинце всего 0,02%! Искусство древних металлургов достойно удивления: ведь у них не было ни возможности контролировать температуру на разных стадиях процесса, ни проводить химических анализов. И все же в отвалах рудников оставалось много неизвлеченного свинца. Еще лучших результатов добились римские металлурги, вдвое снизив остаточное количество серебра. Конечно, их беспокоила не чистота свинца, а полнота извлечения из него драгоценного металла. Более того, как свидетельствует греческий историк Страбон, перерабатывая старые отвалы в Лаврионе, римляне смогли извлечь довольно много и свинца, и серебра, оставив около двух миллионов тонн отработанной руды в отвалах. После этого рудники были заброшены почти на два тысячелетия, но в 1864 отвалы снова начали перерабатывать – теперь уже ради только серебра (его в них оставалось около 0,01%). На современных металлургических предприятиях в свинце оставляют еще в сотни раз меньше серебра.

Древние гончары, размалывая свинцовый блеск с глиной и водой, обливали этой смесью подлежащие обжигу глиняные сосуды. При высокой температуре поверхность сосуда покрывалась легкоплавким свинцовым стеклом. В 1673 английский стекольный мастер Джордж Равенскрофт, добавив в состав стекла оксид свинца, изобрел хрустальное стекло, которое легко плавится, прекрасно поддается обработке и обладает особым блеском, приближающим его к настоящему горному хрусталю. Позднее, сплавив чистый белый песок, поташ и оксид свинца, получили страз (от имени жившего в конце 18 в. ювелира Страсса) – сорт стекла с таким сильным блеском, что оно хорошо имитировало алмаз, а с примесью разных пигментов – другие драгоценные камни.

Тонкими свинцовыми пластинами обшивали деревянные корпуса древних кораблей. Один такой греческий корабль, построенный в III в. до н.э., был найден в 1954 на дне Средиземного моря недалеко от Марселя. Римляне изготовляли также из свинца трубы длиной 3 метра и разного, но строго определенного диаметра (всего было 15 вариантов). Это первый в истории пример стандартизированного промышленного производства. Сначала из свинца отливали пластину, оборачивали ее вокруг деревянного стержня и запаивали шов оловянно-свинцовым припоем (его состав с тех пор практически не изменился). В трубах нередко обнаруживались течи, и их надо было ремонтировать. До сих пор во время раскопок в Италии и в Англии находят такие трубы в очень хорошем состоянии. Римский зодчий и инженер Марк Витрувий Поллион рекомендовал заменить свинцовые трубы керамическими – из обожженной глины. Он обратил внимание на болезненность рабочих, занятых выплавкой свинца и считал, что свинец «лишает кровь ее силы». Однако не все разделяли это мнение. Так, римский государственный деятель, ученый и писатель Плиний, автор знаменитой «Естественной истории», писал о пользе свинцовых препаратов, о том, что свинцовая мазь помогает выводить шрамы, излечивать язвы и глазные болезни.

В средние века крыши церквей и дворцов нередко покрывали свинцовыми пластинами, устойчивыми к атмосферным влияниям. Еще в 669 свинцом покрыли крышу монастырской церкви в Йорке, а в 688 епископ в Нортумберленде приказал обшить свинцовыми пластинами крышу и стены церкви. Знаменитые витражи в соборах собирали с помощью свинцовых рамок с желобками, в которых укрепляли пластинки цветного стекла. Делали из свинца, по примеру римлян, и водопроводные, а также дренажные трубы. Так, в 1532 в Вестминстерском дворце установили свинцовые водосточные трубы квадратного сечения. Все эти изделия в те времена не прокатывали, а отливали в формах, на дно которых насыпали тонко просеянный песок. Со временем на свинцовых изделиях появлялся прочный защитный слой – патина. Некоторые облицованные свинцом средневековые шпили сохранились в течение почти семисот лет. К сожалению, пожар 1561 в Лондоне уничтожил такой шпиль величайшего собора святого Петра.

Когда появилось огнестрельное оружие, большие количества свинца пошли для изготовления пуль и дроби, и свинец начал ассоциироваться также со смертельной опасностью: «Засвищет вокруг меня губительный свинец» (А.Пушкин), «За твой окоп другой боец подставил грудь под злой свинец» (К.Симонов). Сначала дробь отливали в разъемных формах. В 1650 английский принц Руперт изобрел более быстрый и удобный способ. Он обнаружил, что если к свинцу добавить немного мышьяка и лить этот сплав через своего рода большой дуршлаг в бак с водой, то получаются шарики дроби правильной сферической формы. А после того, как в 1436 Иоганн Гутенберг изобрел способ печатать книги с использованием подвижных металлических литер, печатники в течение сотен лет отливали буквы из так называемого типографского сплава на основе свинца (с примесью олова и сурьмы).

Из соединений свинца с древних времен использовали свинцовый сурик Pb 3 O 4 и основной карбонат свинца (свинцовые белила) в качестве красной и белой краски. Почти все картины старых мастеров писаны красками, приготовленными на основе свинцовых белил. Оригинальным был старинный способ их получения: горшки с крепким уксусом ставили в навоз, а над ними подвешивали скрученные в спираль тонкие свинцовые пластины. Разлагаясь, навоз давал тепло (оно необходимо для усиленного испарения уксусной кислоты) и углекислый газ. Совместное действие на свинец этих веществ, а также кислорода воздуха и давало белила. Помимо ядовитости, эти белила темнеют со временем, так как реагируют со следами сероводорода, который всегда присутствует в воздухе: 2PbCO 3 ·Pb(OH) 2 + 3H 2 S ® 3PbS + 2CO 2 + 4H 2 O. При реставрации таких картин потемневшие участки осторожно обрабатывают раствором Н 2 О 2 , что переводит черный сульфид в белый сульфат: PbS + 4H 2 O 2 ® PbSO 4 + 4H 2 O. В настоящее время ядовитые свинцовые белила заменены более дорогими, но безвредными титановыми. Ограниченное применение (например, в качестве пигментов для художественных масляных красок) имеют пигменты, содержащих свинец: свинцовый крон лимонный 2PbCrO 4 ·PbSO 4 , свинцовый крон желтый 13PbCrO 4 ·PbSO 4 , красного цвета свинцово-молибдатный крон 7PbCrO 4 ·PbSO 4 ·PbMoO 4 .

Свойства свинца.

Свинец обычно имеет грязно-серый цвет, хотя свежий его разрез имеет синеватый отлив и блестит. Однако блестящий металл быстро покрывается тускло-серой защитной пленкой оксида. Плотность свинца (11,34 г/см 3) в полтора раза больше, чем у железа, вчетверо больше, чем у алюминия; даже серебро легче свинца. Недаром в русском языке «свинцовый» – синоним тяжелого: «Ненастной ночи мгла по небу стелется одеждою свинцовой»; «И как свинец пошел ко дну» – эти пушкинские строки напоминают, что со свинцом неразрывно связано понятие гнета, тяжести.

Свинец очень легко плавится – при 327,5° С, кипит при 1751° С и заметно летуч уже при 700° С. Этот факт очень важен для работающих на комбинатах по добыче и переработке свинца. Свинец – один из самых мягких металлов. Он легко царапается ногтем и прокатывается в очень тонкие листы. Свинец сплавляется со многими металлами. С ртутью он дает амальгаму, которая при небольшом содержании свинца жидкая.

По химическим свойствам свинец – малоактивный металл: в электрохимическом ряду напряжений он стоит непосредственно перед водородом. Поэтому свинец легко вытесняется другими металлами из растворов его солей. Если опустить в подкисленный раствор ацетата свинца цинковую палочку, свинец выделяется на ней в виде пушистого налета из мелких кристалликов, имеющего старинного название «сатурнова дерева». Если затормозить реакцию, обернув цинк фильтровальной бумагой, вырастают более крупные кристаллы свинца.

Наиболее типична для свинца степень окисления +2; соединения свинца(IV) значительно менее устойчивы. В разбавленных соляной и серной кислотах свинец практически не растворяется, в том числе из-за образования на поверхности нерастворимой пленки хлорида или сульфата. С крепкой серной кислотой (при концентрации более 80%) свинец реагирует с образованием растворимого гидросульфата Pb(HSO 4) 2 , а в горячей концентрированной соляной кислоте растворение сопровождается образованием комплексного хлорида H 4 PbCl 6 . Разбавленной азотной кислотой свинец легко окисляется:

Pb + 4HNO 3 ® Pb(NO 3) 2 + 2NO 2 + H 2 O. Разложение нитрата свинца(II) при нагревании – удобный лабораторный метод получения диоксида азота:

2Pb(NO 3) 2 ® 2PbO + 4NO 2 + O 2 .

В присутствии кислорода свинец растворяется также в ряде органических кислот. При действии уксусной кислоты образуется легкорастворимый ацетат Pb(CH 2 COO) 2 (старинное название – «свинцовый сахар»). Свинец заметно растворим также в муравьиной, лимонной и винной кислотах. Растворимость свинца в органических кислотах могло раньше приводить к отравлениям, если пищу готовили в посуде, луженной или паянной свинцовым припоем. Растворимые соли свинца (нитрат и ацетат) в воде гидролизуются:

Pb(NO 3) 2 + H 2 O Pb(OH)NO 3 + HNO 3 . Взвесь основного ацетата свинца («свинцовая примочка») имеет ограниченное медицинское применение в качестве наружного вяжущего средства.

Свинец медленно растворяется и в концентрированных щелочах с выделением водорода: Pb + 2NaOH + 2H 2 O ® Na 2 Pb(OH) 4 + H 2 , что указывает на амфотерные свойства соединений свинца. Белый гидроксид свинца(II), легко осаждаемый из растворов его солей, также растворяется как в кислотах, так и в сильных щелочах:

Pb(OH) 2 + 2HNO 3 ® Pb(NO 3) 2 + 2H 2 O; Pb(OH) 2 + 2NaOH ® Na 2 Pb(OH) 4 . При стоянии или нагревании Pb(OH) 2 разлагается с выделением PbO. При сплавлении PbO со щелочью образуется плюмбит состава Na 2 PbO 2 .

Из щелочного раствора тетрагидроксоплюмбата натрия Na 2 Pb(OH) 4 тоже можно вытеснить свинец более активным металлом. Если в такой нагретый раствор положить маленькую гранулу алюминия, быстро образуется серый пушистый шарик, который насыщен мелкими пузырьками выделяющегося водорода и потому всплывает. Если алюминий взять в виде проволоки, выделяющийся на ней свинец превращает ее в серую «змею».

При нагревании свинец реагирует с кислородом, серой и галогенами. Так, в реакции с хлором образуется тетрахлорид PbCl 4 – желтая жидкость, дымящая на воздухе из-за гидролиза, а при нагревании разлагающаяся на PbCl 2 и Cl 2 . (Галогениды PbBr 4 и PbI 4 не существуют, так как Pb(IV) – сильный окислитель, который окислил бы бромид- и иодид-анионы.) Тонкоизмельченный свинец обладает пирофорными свойствами – вспыхивает на воздухе. При продолжительном нагревании расплавленного свинца он постепенно переходит сначала в желтый оксид PbO (свинцовый глет), а затем (при хорошем доступе воздуха) – в красный сурик Pb 3 O 4 или 2PbO·PbO 2 . Это соединение можно рассматривать также как свинцовую соль ортосвинцовой кислоты Pb 2 . С помощью сильных окислителей, например, хлорной извести, соединения свинца(II) можно окислить до диоксида:

Pb(CH 3 COO) 2 + Ca(ClO)Cl + H 2 O ® PbO 2 + CaCl 2 + 2CH 3 COOH. Диоксид образуется также при обработке сурика азотной кислотой:

Pb 3 O 4 + 4HNO 3 ® PbO 2 + 2Pb(NO 3) 2 + 2H 2 O. Если сильно нагревать коричневый диоксид, то при температуре около 300° С он превратится в оранжевый Pb 2 O 3 (PbO·PbO 2), при 400° С – в красный Pb 3 O 4 , а выше 530° С – в желтый PbO (разложение сопровождается выделением кислорода). В смеси с безводным глицерином свинцовый глет медленно, в течение 30–40 минут реагирует с образованием водоупорной и термостойкой твердой замазки, которой можно склеивать металл, стекло и камень.

Диоксид свинца – сильный окислитель. Струя сероводорода, направленная на сухой диоксид, загорается; концентрированная соляная кислота окисляется им до хлора:

PbO 2 + 4HCl ® PbCl 2 + Cl 2 + H 2 O, сернистый газ – до сульфата: PbO 2 + SO 2 ® PbSO 4 , а соли Mn 2+ – до перманганат-ионов: 5PbO 2 + 2MnSO 4 + H 2 SO 4 ® 5PbSO 4 + 2HMnO 4 + 2H 2 O. Диоксид свинца образуется, а затем расходуется при зарядке и последующем разряде самых распространенных кислотных аккумуляторов. Соединения свинца(IV) обладают еще более типичными амфотерными свойствами. Так, нерастворимый гидроксид Pb(OH) 4 бурого цвета легко растворяется в кислотах и щелочах: Pb(OH) 4 + 6HCl ® H 2 PbCl 6 ; Pb(OH) 4 + 2NaOH ® Na 2 Pb(OH) 6 . Диоксид свинца, реагируя с щелочью, также образует комплексный плюмбат(IV):

PbO 2 + 2NaOH + 2H 2 O ® Na 2 . Если же PbO 2 сплавить с твердой щелочью, образуется плюмбат состава Na 2 PbO 3 . Из соединений, в которых свинец(IV) входит в состав катиона, наиболее важен тетраацетат. Его можно получить кипячением сурика с безводной уксусной кислотой:

Pb 3 O 4 + 8CH 3 COOH ® Pb(CH 3 COO) 4 + 2Pb(CH 3 COO) 2 + 4H 2 O. При охлаждении из раствора выделяются бесцветные кристаллы тетраацетата свинца. Другой способ – окисление ацетата свинца(II) хлором: 2Pb(CH 3 COO) 2 + Cl 2 ® Pb(CH 3 COO) 4 + PbCl 2 . Водой тетраацетат мгновенно гидролизуется до PbO 2 и CH 3 COOH. Тетраацетат свинца находит применение в органической химии в качестве селективного окислителя. Например, он весьма избирательно окисляет только некоторые гидроксильные группы в молекулах целлюлозы, а 5-фенил-1-пентанол под действием тетраацетата свинца окисляется с одновременной циклизацией и образованием 2-бензилфурана.

Органические производные свинца – бесцветные очень ядовитые жидкости. Один из методов их синтеза – действие алкилгалогенидов на сплав свинца с натрием:

4C 2 H 5 Cl + 4PbNa ® (C 2 H 5) 4 Pb + 4NaCl + 3Pb. Действием газообразного HCl можно отщеплять от тетразамещенных свинца один алкильный радикал за другим, заменяя их на хлор. Соединения R 4 Pb разлагаются при нагревании с образованием тонкой пленки чистого металла. Такое разложение тетраметилсвинца было использовано для определения времени жизни свободных радикалов. Тетраэтилсвинец – антидетонатор моторного топлива.

Получение свинца.

Количество добываемого свинца непрерывно возрастает. Если в 1800 во всем мире его было получено около 30 000 тонн, то в 1850 – 130 000 т, в 1875 – 320 000 т, в 1900 – 850 000 т, 1950 – почти 2 млн. т, а в настоящее время в год добывают около 5 млн. т. По объему производства свинец занимает четвертое место среди цветных металлов – после алюминия, меди и цинка.

Основной источник свинца – сульфидные полиметаллические руды, содержащие от 1 до 5% свинца. Руду концентрируют до содержания свинца 40 – 75%, затем подвергают обжигу: 2PbS + 3O 2 ® 2PbO + 2SO 2 и восстанавливают свинец коксом и оксидом углерода(II). Более экономичный, так называемый автогенный, способ заключается в проведении реакции PbS + 2PbO ® 3Pb + SO 2 (PbO образуется при частичном обжиге PbS). Получаемый из руды свинец содержит от 3 до 7% примесей в виде меди, сурьмы, мышьяка, олова, алюминия, висмута а также золота и серебра. Их удаление (или выделение, если это экономически рентабельно), требует сложных и длительных операций. Очистку свинца можно проводить также методом электрохимического рафинирования. Электролитом служит водный раствор фторосиликата свинца PbSiF 6 . На катоде оседает чистый свинец, а примеси концентрируются в анодном шламе, содержащем много ценных компонентов, которые затем выделяют.

Свинец в организме человека.

Соединения свинца ядовиты. Но очевидным это стало далеко не сразу. В прошлом покрытия гончарных изделий свинцовой глазурью, изготовление свинцовых водопроводных труб, использование свинцовых белил (особенно в косметических целях), применение свинцовых трубок в конденсаторах паров на винокуренных заводах – все это приводило к накоплению свинца в организме. Древние греки знали, что вино и кислые соки нельзя держать в глазурованных глиняных сосудах (глазурь содержала свинец), а вот римляне этим правилом пренебрегали. Джемс Линд, рекомендовавший в 1753 английскому адмиралтейству лимонный сок как средство против цинги для моряков в дальнем плавании, предостерегал от хранения сока в гончарных глазурованных изделиях. Тем не менее случаи отравления, в том числе и смертельные, наблюдались по той же причине и двести лет спустя.

Свинец проникает в организм через желудочно-кишечный тракт или дыхательную систему и разносится затем кровью по всему организму. Причем вдыхание свинцовой пыли значительно опаснее присутствия свинца в пище. В воздухе городов содержание свинца составляет в среднем от 0,15 до 0,5 мкг/м 3 . В районах, где расположены предприятия по переработке полиметаллических руд, эта концентрация выше.

Свинец накапливается в костях, частично замещая кальций в фосфате Са 3 (РО 4) 2 . Попадая в мягкие ткани – мышцы, печень, почки, головной мозг, лимфатические узлы, свинец вызывает заболевание – плюмбизм. Как и многие другие тяжелые металлы, свинец (в виде ионов) блокирует деятельность некоторых ферментов. Было установлено, что их активность снижается в 100 раз при увеличении концентрации свинца в крови в 10 раз – с 10 до 100 микрограммов на 100 мл крови. При этом развивается анемия, поражаются кроветворная система, почки и мозг, снижается интеллект. Признак хронического отравления – серая кайма на деснах, расстройство нервной системы. Особенно опасен свинец для детей, так как он вызывает задержку в развитии. В то же время десятки миллионов детей во всем мире в возрасте до 6 лет имеют свинцовое отравление; основная причина – попадание в рот краски, содержащей свинец. Антидотом при отравлении может служить кальциевая соль этилендиаминтетрауксусной кислоты. В отравленном организме происходит замещение кальция на ионы свинца, которые удерживаются в этой соли очень прочно и в таком виде выводятся.

Свинец легко может попасть в организм с питьевой водой, если она соприкасалась с металлом: в присутствии углекислого газа в раствор медленно переходит растворимый гидрокарбонат Pb(HCO 3) 2 . В Древнем Риме, где для подачи воды использовали свинцовые трубы, такое отравление было весьма распространенным, на что указывают анализы останков римлян. Причем отравлялись, в основном, богатые римляне, пользовавшиеся водопроводом, хранившие вино, оливковое масло и другие продукты в освинцованных сосудах, использовавшие содержащие свинец косметические средства. Достаточно, чтобы в литре воды был всего один миллиграмм свинца – и питье такой воды становится очень опасным. Это количество свинца так малó, что не изменяет ни запаха, ни вкуса воды, и только точные современные приборы могут его обнаружить.

Свинцовым отравлением некоторые историки объясняют и болезненность ряда русских царей. В 1633 в московском Кремле закончили строительство водопровода. Вода в него поступала из колодца в нижнем этаже Свибловой башни, стоявшей на слиянии Неглинной и Москвы-реки. Воду из колодца качали при помощи подъемной машины – взвода (с тех пор эта кремлевская башня называется Водовзводной). Машину приводили в движение лошади. Воду закачивали в большой бак, а оттуда вода сама по трубам текла на царскую кухню, в сады, другие места. Трубы были изготовлены из свинца; бак для воды изнутри тоже был выложен свинцовыми листами, чтобы вода из него не просачивалась в щели. Особенно много свинца накапливалось в воде за ночь, после ее неподвижного стояния в свинцовом баке и трубах.

Кремлевский «свинцовый водопровод» работал чуть больше 100 лет – его уничтожил пожар 1737. И в период действия этого водопровода русские цари жили меньше обычного. Так, царь и великий князь Иван V Алексеевич, сын царя Алексея Михайловича и первой жены его, Милославской, прожил всего 29 лет. Незадолго до смерти он выглядел дряхлым стариком. С детства он был, как писали тогда, «слабый и болезненный, немощен телом и рассудком, заикался, скорбен головою, страдал цингою и глазною болезнью». Из шести братьев царя пятеро не дожили до 20 лет. Некоторые ученые считают, что это последствия свинцового отравления. А вот шестой брат, Петр Алексеевич, будущий Петр I, избежал отравления – детство и отрочество он провел не в Кремле, а в подмосковных селах. Да и позднее он мало бывал в Кремле – много воевал, путешествовал по Европе, а потом и вовсе перенес столицу на берега Невы. Кстати, первый водопровод в Петербурге, который давал воду для дворцов и фонтанов Летнего сада, был деревянным. Его трубы были сделаны из бревен с просверленными в них отверстиями. Свинец же Петр использовал в военных целях – для отливки пуль.

А вот как пишут о свинцовом отравлении современные медицинские справочники: вялость, апатия, потеря памяти, раннее слабоумие, ослабление зрения, больные выглядят старше своих лет. Удивительно напоминает старинное описание царя Ивана Алексеевича!

Травились когда-то не только «свинцовой водой». Свинец широко использовали при изготовлении посуды (свинцовая глазурь), свинцовых белил, которыми окрашивали стены домов. Сейчас такое применение свинца строжайше запрещено. Белила, например, делают цинковые или титановые. Тем не менее у жителей промышленно развитых стран свинца в организме больше, чем у жителей отсталых и развивающихся стран, а у городских жителей больше, чем у сельских. Разница может быть огромной – в сотни раз.

Свинцовое загрязнение приобрело в 20 в. глобальный характер. Даже в снегах Гренландии его содержание за сто лет увеличилось в пять раз, а в центрах крупных городов в почве и растениях свинца в 25 раз больше, чем на окраинах! Загрязнение свинцом наблюдается в районах его добычи, а также в местах переработки и автострад, особенно если еще используется этилированный бензин. Немало свинца оседает на дне озер в виде охотничьей дроби. Каждый год в Мировой океан со сточными водами попадает более полумиллиона тонн этого ядовитого металла. А кто не видел выброшенные в мусорные ящики, а то и просто в канавы отработанные аккумуляторы! Пока свинец дешев, собирание и переработка его отходов невыгодна. Малая растворимость большинства соединений свинца, к счастью, не позволяет ему накапливаться в значительных количествах в воде. В водах Мирового океана его содержится в среднем 0,03 мкг/л (3·10 –9 %). Мало в среднем свинца и в живом веществе – 10 –4 %.

Применение свинца.

Несмотря на ядовитость свинца, отказаться от него невозможно. Свинец дешев – вдвое дешевле алюминия, в 11 раз дешевле олова. После того как в 1859 французский физик Гастон Планте изобрел свинцовый аккумулятор, для изготовления аккумуляторных пластин с тех пор израсходовали миллионы тонн свинца; в настоящее время на эти цели уходит в ряде стран до 75% всего добываемого свинца! Постепенно снижается применение свинца для изготовления очень ядовитого антидетонатора – тетраэтилсвинца. Способность тетраэтилсвинца улучшать качество бензина было открыто группой молодых американских инженеров в 1922; в своих поисках они руководствовались периодической таблицей элементов, планомерно приближаясь к наиболее эффективному средству. С тех пор производство тетраэтилсвинца непрерывно росло; максимум приходится на конец 1960-х, когда только в США ежегодно с выхлопами выбрасывались сотни тысяч тонн свинца – по килограмму на каждого жителя! В последние годы применение этилированного бензина запрещено во многих регионах, и его производство снижается.

Мягкий и пластичный свинец, не ржавеющий в присутствии влаги, – незаменимый материал для изготовления оболочек электрических кабелей; на эти цели в мире расходуется до 20% свинца. Малоактивный свинец используют для изготовления кислотоупорной аппаратуры для химической промышленности, например, для облицовки реакторов, в которых получают соляную и серную кислоты. Тяжелый свинец хорошо задерживает губительные для человека излучения и потому свинцовые экраны используются для защиты работников рентгеновских кабинетов, в свинцовых контейнерах хранят и перевозят радиоактивные препараты. Свинец содержат также подшипниковые сплавы баббиты, «мягкие» припои (самый известный – «третник» – сплав свинца с оловом).

В строительстве свинец используют для уплотнения швов и создания сейсмостойких фундаментов. В военной технике – для изготовления шрапнели и сердечников пуль.

Илья Леенсон

Литература:

A History of Technology . Vol. I – V. Oxford: Clarendon Press, 1956–1958
Chisolm J.J. Lead Poisoning. Scientific American , 1971, February
Свинец . Женева: изд-во ООН и ВОЗ, 1980
Полянский Н.Г. Свинец . М., «Наука», 1986
Давыдова С.Л., Пименов Ю.Т., Милаева Е.Р. Ртуть, олово, свинец и их органические производные в окружающей среде . Астрахань, 2001



Свине́ц - элемент главной подгруппы четвёртой группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 82. Обозначается символом Pb (лат. Plumbum). Простое вещество свинец (CAS-номер: 7439-92-1) - ковкий, сравнительно легкоплавкий металл серого цвета.

Происхождение названия

Происхождение слова «свинец» неясно. В большинстве славянских языков (болгарском, сербско-хорватском, чешском, польском) свинец называется оловом. Слово с тем же значением, но похожее по произношению на «свинец», встречается в языках балтийской группы: švinas (литовский), svins (латышский), а также в восточнославянских - украинском (свинець) и белорусском (свінец).
Латинское plumbum, употребляемое, помимо остальных, Петронием Арбитром дало английское слово plumber - водопроводчик (в Древнем Риме трубы водопровода были именно из этого металла, как наиболее подходящего для отливки), и название венецианской тюрьмы со свинцовой крышей - Пьомбе, из которой по некоторым данным ухитрился бежать Казанова. Известен с глубокой древности. Изделия из этого металла (монеты, медальоны) использовались в Древнем Египте, свинцовые водопроводные трубы - в Древнем Риме. Указание на свинец как на определённый металл имеется в Ветхом Завете. Выплавка свинца была первым из известных человеку металлургических процессов. До 1990 г. большое количество свинца использовалось (вместе с сурьмой и оловом) для отливки типографских шрифтов, а также в виде тетраэтилсвинца - для повышения октанового числа моторного топлива.

Физические свойства

Свинец имеет довольно низкую теплопроводность, она составляет 35,1 Вт/(м·К) при температуре 0 °C. Металл мягкий, легко режется ножом. На поверхности он обычно покрыт более или менее толстой плёнкой оксидов, при разрезании открывается блестящая поверхность, которая на воздухе со временем тускнеет.
Свинец широко используют для защиты от гамма-излучения, как элемент с большим атомным номером (и следовательно большим количеством электронов на один атом), достаточно распространённый в природе, не радиоактивный.

Плотность - 11,3415 г/см³ (при 20 °C)
Температура плавления - 327,4 °C (621,32 °F; 600,55 K)
Температура кипения - 1740 °C (3164 °F; 2013,15 K)

Химические свойства

Свинец не очень активен химически. На металлическом разрезе свинца виден металлический блеск, постепенно исчезающий из-за образования тонкой плёнки PbO.
С кислородом образует ряд соединений Pb 2 О, PbO, Pb 2 О 3 , Pb 3 О 4 , PbO 2 . Без кислорода вода при комнатной температуре не реагирует со свинцом, но при большой температуре при взаимодействии свинца и горячего водяного пара получаются оксиды свинца и водород.
Оксидам PbO и PbO 2 соответствуют амфотерные гидроксиды Pb(ОН) 2 и Pb(ОН) 4 .
При реакции Mg 2 Pb и разбавленной HCl получается небольшое количество PbH 4 . PbH 4 - газообразное вещество без запаха, которое очень легко разлагается на свинец и водород. При большой температуре галогены образовывают со свинцом соединения вида PbX 2 (X - соответствующий галоген). Все эти соединения мало растворяются в воде. Могут быть получены галогениды и типа PbX 4 . Свинец с азотом прямо не реагирует. Азид свинца Pb(N 3) 2 получают косвенным путём: взаимодействием растворов солей Pb(II) и соли NaN 3 . Сульфиды свинца можно получить при нагревании серы со свинцом, образуется сульфид PbS. Сульфид получают также пропусканием сероводорода в растворы солей Pb(II). В ряду напряжений свинец стоит левее водорода, но свинец не вытесняет водород из разбавленных HCl и H 2 SO 4 , из-за перенапряжения Н 2 на Pb, а также на поверхности металла образуются плёнки труднорастворимых хлорида PbCl 2 и сульфата PbSO 4 , защищающие металл от дальнейшего действия кислот. Концентрированные кислоты типа H 2 SO 4 и HCl при нагревании действуют на Pb и образуют с ним растворимые комплексные соединения состава Pb(HSO 4) 2 и Н 2 . Азотная, а также некоторые органических кислоты (например, лимонная) растворяют свинец с получением солей Pb(II). По растворимости в воде соли свинца делятся на нерастворимые (например, сульфат, карбонат, хромат, фосфат, молибдат и сульфид), малорастворимые (хлорид и фторид) и растворимые (к примеру, ацетат, нитрат и хлорат свинца). Соли Pb(IV) могут быть получены электролизом сильно подкисленных серной кислотой растворов солей Pb(II). Соли Pb(IV) присоединяют отрицательные ионы с образованием комплексных анионов, например, плюмбатов (PbO 3) 2- и (PbO 4) 4- , хлороплюмбатов 2- , гидроксоплюмбатов 2- и других. Концентрированные растворы едких щелочей при нагревании реагируют со свинцом с выделением водорода и гидроксоплюмбитов типа .
Потенциал ионизации Е ион =7,42 эВ.

Илья Леенсон

СВИНЕЦ - химический элемент IV группы периодической таблицы. Относительная атомная масса (Ar = 207,2) является усредненной из масс нескольких изотопов: 204Pb (1,4%), 206Pb (24,1%), 207Pb (22,1%) и 208Pb (52,4%). Последние три нуклида - конечные продукты естественных радиоактивных превращений урана, актиния и тория. Известно также более 20 радиоактивных изотопов свинца, из которых наиболее долгоживущие - 202Pb и 205Pb (с периодами полураспада 300 тысяч и 15 млн. лет). В природе образуются также и короткоживущие изотопы свинца с массовыми числами 209, 210, 212 и 214 с периодами полураспада соответственно 3,25 ч, 27,1 года, 10,64 ч и 26,8 мин. Соотношение различных изотопов в разных образцах свинцовых руд может несколько различаться, что не дает возможности определить для свинца значение Ar с большей точностью.

В земной коре свинца немного - 0,0016% по массе, но этот один из самых тяжелых металлов распространен гораздо больше, чем его ближайшие соседи - золото, ртуть и висмут. Это связано с тем, что разные изотопы свинца являются конечными продуктами распада урана и тория, так что содержание свинца в земной коре медленно увеличивалось в течение миллиардов лет.

Известно много рудных месторождений, богатых свинцом, причем металл легко выделяется из минералов. Всего известно более ста свинцовых минералов. Из них основные - галенит (свинцовый блеск) PbS и продукты его химических превращений - англезит (свинцовый купорос) PbSO4 и церуссит («белая свинцовая руда») PbCO3. Реже встречаются пироморфит («зеленая свинцовая руда») PbCl2·3Pb3(PO4)2, миметит PbCl2·3Pb3(AsO4)2, крокоит («красная свинцовая руда») PbCrO4, вульфенит («желтая свинцовая руда») PbMoO4, штольцит PbWO4. В свинцовых рудах часто находятся также другие металлы - медь, цинк, кадмий, серебро, золото, висмут и др. В месте залегания свинцовых руд этим элементом обогащена почва (до 1% Pb), растения и воды.

В сильноокислительной щелочной среде степей и пустынь возможно образование диоксида свинца - минерала платтнерита. И исключительно редко встречается самородный металлический свинец. См. также СВИНЦОВАЯ ПРОМЫШЛЕННОСТЬ.

История. Происхождение слова «свинец» неясно. В старину свинец не всегда четко отличали от олова. В большинстве славянских языков (болгарском, сербскохорватском, чешском, польском) свинец и называется оловом. Наш же «свинец» встречается только в языках балтийской группы: svinas (литовский), svin (латышский). У некоторых горе-переводчиков это приводило к забавным недоразумениям, например, к «оловянным аккумуляторам» в автомобилях. Английское название свинца lead и голландское lood, возможно, связаны с нашим «лудить». Латинское же plumbum (тоже неясного происхождения) дало английское слово plumber - водопроводчик (когда-то трубы зачеканивали мягким свинцом. И еще одна путаница, связанная со свинцом. Древние греки называли свинец «молибдос» (название сохранилось и в новогреческом языке). Отсюда - латинское molibdaena: так в средние века называли и свинцовый блеск PbS, и более редкий молибденовый блеск (MoS2), и другие похожие минералы, оставлявшие черный след на светлой поверхности. Такой же след оставляли графит и сам свинец. Тонкими свинцовыми стержнями можно было писать на пергаменте; недаром по-немецки карандаш - Bleistift, т.е. свинцовый стержень.

Свинец вместе с золотом, серебром, медью, оловом, железом и ртутью входит в семерку металлов, известных с глубокой древности. Эти металлы сопоставлялись с известными тогда планетами (свинцу соответствовал Сатурн). Считается, что впервые люди выплавили свинец из руд 8 тысяч лет назад. Раскопки в Древнем Египте обнаружили изделия из серебра и свинца в захоронениях до династического периода. К этому же времени относятся аналогичные находки, сделанные в Месопотамии. Совместные находки серебряных и свинцовых изделий не удивительны. Еще в доисторические времена внимание людей привлекли красивые тяжелые кристаллы свинцового блеска. Залежи этого минерала находили в горах Армении, в центральных районах Малой Азии. А минерал галенит часто содержит значительные примеси серебра. Если положить куски этого минерала в костер, то сера выгорит и потечет расплавленный свинец (древесный уголь препятствует окислению свинца). Уже за много тысячелетий до новой эры в Месопотамии, Египте из него отливали статуи.

В VI в. до н.э. богатые залежи галенита были обнаружены в Лаврионе - гористой местности недалеко от Афин. Во времена пунических войн (264-146 до н.э.) на территории современной Испании работали многочисленные свинцовые шахты, которые были заложены греками и финикийцами. Позднее они разрабатывались римлянами; римские инженеры использовали свинец для изготовления труб древнего водопровода. Древнегреческий историк Геродот (V в. до н.э.) писал о методе укрепления железных и бронзовых скоб в каменных плитах путем заливки отверстий легкоплавким свинцом. Позднее при раскопках Микен нашли свинцовые скобы в каменных стенах.

При получении свинца античные металлурги сначала прокаливали руду, при этом шли реакции

2PbS + 3O2 ® 2PbO + 2SO2 и PbS + 2O2 ® PbSO4. Затем температуру повышали, что приводило к выплавке свинца:

PbS + 2PbO ® 3Pb + SO2; PbS + PbSO4 ® 2Pb + 2SO2. Первые плавильные печи, сделанные из глины и камней, были весьма примитивны. Их старались установить на склонах холмов, где дуют ветры, помогающие обжигу. Выплавленный свинец, как правило, содержал серебро - иногда до 0,5% и более. При медленном охлаждении такого расплава сначала кристаллизуется чистый свинец, а жидкость обогащается серебром - примерно до 2%. Для выделения серебра использовали метод купелирования: окисляли расплавленный свинец в пористом глиняном сосуде - купели, а его оксид затем снова восстанавливали до металла. Механизм этого процесса был изучен только в 1833.

Использовали свинец и для очистки золота и серебра методом купелирования. Для этого подлежащий очистке драгоценный металл сплавляли со свинцом. Свинец и другие примеси легко окислялись при высокой температуре; образующиеся оксиды сдувались струей воздуха, а частично впитывались в поры купели, а на дне оставался слиток чистого серебра или золота. Оксид свинца затем снова могли превратить в металл, нагревая его с древесным углем. Археологические находки в Уре и Трое свидетельствуют, что купелирование было известно на северо-западе Малой Азии уже в первой половине III тыс. до н.э. А греческим умельцам из добытого в Лаврионе свинца удавалось извлечь почти все серебро: по современным анализам его оставалось в свинце всего 0,02%! Искусство древних металлургов достойно удивления: ведь у них не было ни возможности контролировать температуру на разных стадиях процесса, ни проводить химических анализов. И все же в отвалах рудников оставалось много неизвлеченного свинца. Еще лучших результатов добились римские металлурги, вдвое снизив остаточное количество серебра. Конечно, их беспокоила не чистота свинца, а полнота извлечения из него драгоценного металла. Более того, как свидетельствует греческий историк Страбон, перерабатывая старые отвалы в Лаврионе, римляне смогли извлечь довольно много и свинца, и серебра, оставив около двух миллионов тонн отработанной руды в отвалах. После этого рудники были заброшены почти на два тысячелетия, но в 1864 отвалы снова начали перерабатывать - теперь уже ради только серебра (его в них оставалось около 0,01%). На современных металлургических предприятиях в свинце оставляют еще в сотни раз меньше серебра.

Древние гончары, размалывая свинцовый блеск с глиной и водой, обливали этой смесью подлежащие обжигу глиняные сосуды. При высокой температуре поверхность сосуда покрывалась легкоплавким свинцовым стеклом. В 1673 английский стекольный мастер Джордж Равенскрофт, добавив в состав стекла оксид свинца, изобрел хрустальное стекло, которое легко плавится, прекрасно поддается обработке и обладает особым блеском, приближающим его к настоящему горному хрусталю. Позднее, сплавив чистый белый песок, поташ и оксид свинца, получили страз (от имени жившего в конце 18 в. ювелира Страсса) - сорт стекла с таким сильным блеском, что оно хорошо имитировало алмаз, а с примесью разных пигментов - другие драгоценные камни.

Тонкими свинцовыми пластинами обшивали деревянные корпуса древних кораблей. Один такой греческий корабль, построенный в III в. до н.э., был найден в 1954 на дне Средиземного моря недалеко от Марселя. Римляне изготовляли также из свинца трубы длиной 3 метра и разного, но строго определенного диаметра (всего было 15 вариантов). Это первый в истории пример стандартизированного промышленного производства. Сначала из свинца отливали пластину, оборачивали ее вокруг деревянного стержня и запаивали шов оловянно-свинцовым припоем (его состав с тех пор практически не изменился). В трубах нередко обнаруживались течи, и их надо было ремонтировать. До сих пор во время раскопок в Италии и в Англии находят такие трубы в очень хорошем состоянии. Римский зодчий и инженер Марк Витрувий Поллион рекомендовал заменить свинцовые трубы керамическими - из обожженной глины. Он обратил внимание на болезненность рабочих, занятых выплавкой свинца и считал, что свинец «лишает кровь ее силы». Однако не все разделяли это мнение. Так, римский государственный деятель, ученый и писатель Плиний, автор знаменитой «Естественной истории», писал о пользе свинцовых препаратов, о том, что свинцовая мазь помогает выводить шрамы, излечивать язвы и глазные болезни.

В средние века крыши церквей и дворцов нередко покрывали свинцовыми пластинами, устойчивыми к атмосферным влияниям. Еще в 669 свинцом покрыли крышу монастырской церкви в Йорке, а в 688 епископ в Нортумберленде приказал обшить свинцовыми пластинами крышу и стены церкви. Знаменитые витражи в соборах собирали с помощью свинцовых рамок с желобками, в которых укрепляли пластинки цветного стекла. Делали из свинца, по примеру римлян, и водопроводные, а также дренажные трубы. Так, в 1532 в Вестминстерском дворце установили свинцовые водосточные трубы квадратного сечения. Все эти изделия в те времена не прокатывали, а отливали в формах, на дно которых насыпали тонко просеянный песок. Со временем на свинцовых изделиях появлялся прочный защитный слой - патина. Некоторые облицованные свинцом средневековые шпили сохранились в течение почти семисот лет. К сожалению, пожар 1561 в Лондоне уничтожил такой шпиль величайшего собора святого Петра.

Когда появилось огнестрельное оружие, большие количества свинца пошли для изготовления пуль и дроби, и свинец начал ассоциироваться также со смертельной опасностью: «Засвищет вокруг меня губительный свинец» (А.Пушкин), «За твой окоп другой боец подставил грудь под злой свинец» (К.Симонов). Сначала дробь отливали в разъемных формах. В 1650 английский принц Руперт изобрел более быстрый и удобный способ. Он обнаружил, что если к свинцу добавить немного мышьяка и лить этот сплав через своего рода большой дуршлаг в бак с водой, то получаются шарики дроби правильной сферической формы. А после того, как в 1436 Иоганн Гутенберг изобрел способ печатать книги с использованием подвижных металлических литер, печатники в течение сотен лет отливали буквы из так называемого типографского сплава на основе свинца (с примесью олова и сурьмы).

Из соединений свинца с древних времен использовали свинцовый сурик Pb3O4 и основной карбонат свинца (свинцовые белила) в качестве красной и белой краски. Почти все картины старых мастеров писаны красками, приготовленными на основе свинцовых белил. Оригинальным был старинный способ их получения: горшки с крепким уксусом ставили в навоз, а над ними подвешивали скрученные в спираль тонкие свинцовые пластины. Разлагаясь, навоз давал тепло (оно необходимо для усиленного испарения уксусной кислоты) и углекислый газ. Совместное действие на свинец этих веществ, а также кислорода воздуха и давало белила. Помимо ядовитости, эти белила темнеют со временем, так как реагируют со следами сероводорода, который всегда присутствует в воздухе: 2PbCO3·Pb(OH)2 + 3H2S ® 3PbS + 2CO2 + 4H2O. При реставрации таких картин потемневшие участки осторожно обрабатывают раствором Н2О2, что переводит черный сульфид в белый сульфат: PbS + 4H2O2 ® PbSO4 + 4H2O. В настоящее время ядовитые свинцовые белила заменены более дорогими, но безвредными титановыми. Ограниченное применение (например, в качестве пигментов для художественных масляных красок) имеют пигменты, содержащих свинец: свинцовый крон лимонный 2PbCrO4·PbSO4, свинцовый крон желтый 13PbCrO4·PbSO4, красного цвета свинцово-молибдатный крон 7PbCrO4·PbSO4·PbMoO4.

Свойства свинца. Свинец обычно имеет грязно-серый цвет, хотя свежий его разрез имеет синеватый отлив и блестит. Однако блестящий металл быстро покрывается тускло-серой защитной пленкой оксида. Плотность свинца (11,34 г/см3) в полтора раза больше, чем у железа, вчетверо больше, чем у алюминия; даже серебро легче свинца. Недаром в русском языке «свинцовый» - синоним тяжелого: «Ненастной ночи мгла по небу стелется одеждою свинцовой»; «И как свинец пошел ко дну» - эти пушкинские строки напоминают, что со свинцом неразрывно связано понятие гнета, тяжести.

Свинец очень легко плавится - при 327,5° С, кипит при 1751° С и заметно летуч уже при 700° С. Этот факт очень важен для работающих на комбинатах по добыче и переработке свинца. Свинец - один из самых мягких металлов. Он легко царапается ногтем и прокатывается в очень тонкие листы. Свинец сплавляется со многими металлами. С ртутью он дает амальгаму, которая при небольшом содержании свинца жидкая.

По химическим свойствам свинец - малоактивный металл: в электрохимическом ряду напряжений он стоит непосредственно перед водородом. Поэтому свинец легко вытесняется другими металлами из растворов его солей. Если опустить в подкисленный раствор ацетата свинца цинковую палочку, свинец выделяется на ней в виде пушистого налета из мелких кристалликов, имеющего старинного название «сатурнова дерева». Если затормозить реакцию, обернув цинк фильтровальной бумагой, вырастают более крупные кристаллы свинца.

Наиболее типична для свинца степень окисления +2; соединения свинца(IV) значительно менее устойчивы. В разбавленных соляной и серной кислотах свинец практически не растворяется, в том числе из-за образования на поверхности нерастворимой пленки хлорида или сульфата. С крепкой серной кислотой (при концентрации более 80%) свинец реагирует с образованием растворимого гидросульфата Pb(HSO4)2, а в горячей концентрированной соляной кислоте растворение сопровождается образованием комплексного хлорида H4PbCl6. Разбавленной азотной кислотой свинец легко окисляется:

Pb + 4HNO3 ® Pb(NO3)2 + 2NO2 + H2O. Разложение нитрата свинца(II) при нагревании - удобный лабораторный метод получения диоксида азота:

2Pb(NO3)2 ® 2PbO + 4NO2 + O2.

В присутствии кислорода свинец растворяется также в ряде органических кислот. При действии уксусной кислоты образуется легкорастворимый ацетат Pb(CH2COO)2 (старинное название - «свинцовый сахар»). Свинец заметно растворим также в муравьиной, лимонной и винной кислотах. Растворимость свинца в органических кислотах могло раньше приводить к отравлениям, если пищу готовили в посуде, луженной или паянной свинцовым припоем. Растворимые соли свинца (нитрат и ацетат) в воде гидролизуются:

Pb(NO3)2 + H2O Pb(OH)NO3 + HNO3. Взвесь основного ацетата свинца («свинцовая примочка») имеет ограниченное медицинское применение в качестве наружного вяжущего средства.

Свинец медленно растворяется и в концентрированных щелочах с выделением водорода: Pb + 2NaOH + 2H2O ® Na2Pb(OH)4 + H2, что указывает на амфотерные свойства соединений свинца. Белый гидроксид свинца(II), легко осаждаемый из растворов его солей, также растворяется как в кислотах, так и в сильных щелочах:

Pb(OH)2 + 2HNO3 ® Pb(NO3)2 + 2H2O; Pb(OH)2 + 2NaOH ® Na2Pb(OH)4. При стоянии или нагревании Pb(OH)2 разлагается с выделением PbO. При сплавлении PbO со щелочью образуется плюмбит состава Na2PbO2.

Из щелочного раствора тетрагидроксоплюмбата натрия Na2Pb(OH)4 тоже можно вытеснить свинец более активным металлом. Если в такой нагретый раствор положить маленькую гранулу алюминия, быстро образуется серый пушистый шарик, который насыщен мелкими пузырьками выделяющегося водорода и потому всплывает. Если алюминий взять в виде проволоки, выделяющийся на ней свинец превращает ее в серую «змею».

При нагревании свинец реагирует с кислородом, серой и галогенами. Так, в реакции с хлором образуется тетрахлорид PbCl4 - желтая жидкость, дымящая на воздухе из-за гидролиза, а при нагревании разлагающаяся на PbCl2 и Cl2. (Галогениды PbBr4 и PbI4 не существуют, так как Pb(IV) - сильный окислитель, который окислил бы бромид- и иодид-анионы.) Тонкоизмельченный свинец обладает пирофорными свойствами - вспыхивает на воздухе. При продолжительном нагревании расплавленного свинца он постепенно переходит сначала в желтый оксид PbO (свинцовый глет), а затем (при хорошем доступе воздуха) - в красный сурик Pb3O4 или 2PbO·PbO2. Это соединение можно рассматривать также как свинцовую соль ортосвинцовой кислоты Pb2. С помощью сильных окислителей, например, хлорной извести, соединения свинца(II) можно окислить до диоксида:

Pb(CH3COO)2 + Ca(ClO)Cl + H2O ® PbO2 + CaCl2 + 2CH3COOH. Диоксид образуется также при обработке сурика азотной кислотой:

Pb3O4 + 4HNO3 ® PbO2 + 2Pb(NO3)2 + 2H2O. Если сильно нагревать коричневый диоксид, то при температуре около 300° С он превратится в оранжевый Pb2O3 (PbO·PbO2), при 400° С - в красный Pb3O4, а выше 530° С - в желтый PbO (разложение сопровождается выделением кислорода). В смеси с безводным глицерином свинцовый глет медленно, в течение 30-40 минут реагирует с образованием водоупорной и термостойкой твердой замазки, которой можно склеивать металл, стекло и камень.

Диоксид свинца - сильный окислитель. Струя сероводорода, направленная на сухой диоксид, загорается; концентрированная соляная кислота окисляется им до хлора:

PbO2 + 4HCl ® PbCl2 + Cl2 + H2O, сернистый газ - до сульфата: PbO2 + SO2 ® PbSO4, а соли Mn2+ - до перманганат-ионов: 5PbO2 + 2MnSO4 + H2SO4 ®5PbSO4 + 2HMnO4 + 2H2O. Диоксид свинца образуется, а затем расходуется при зарядке и последующем разряде самых распространенных кислотных аккумуляторов. Соединения свинца(IV) обладают еще более типичными амфотерными свойствами. Так, нерастворимый гидроксид Pb(OH)4 бурого цвета легко растворяется в кислотах и щелочах: Pb(OH)4 + 6HCl ® H2PbCl6; Pb(OH)4 + 2NaOH ® Na2Pb(OH)6. Диоксид свинца, реагируя с щелочью, также образует комплексный плюмбат(IV):

PbO2 + 2NaOH + 2H2O ® Na2. Если же PbO2 сплавить с твердой щелочью, образуется плюмбат состава Na2PbO3. Из соединений, в которых свинец(IV) входит в состав катиона, наиболее важен тетраацетат. Его можно получить кипячением сурика с безводной уксусной кислотой:

Pb3O4 + 8CH3COOH ® Pb(CH3COO)4 + 2Pb(CH3COO)2 + 4H2O. При охлаждении из раствора выделяются бесцветные кристаллы тетраацетата свинца. Другой способ - окисление ацетата свинца(II) хлором: 2Pb(CH3COO)2 + Cl2 ® Pb(CH3COO)4 + PbCl2. Водой тетраацетат мгновенно гидролизуется до PbO2 и CH3COOH. Тетраацетат свинца находит применение в органической химии в качестве селективного окислителя. Например, он весьма избирательно окисляет только некоторые гидроксильные группы в молекулах целлюлозы, а 5-фенил-1-пентанол под действием тетраацетата свинца окисляется с одновременной циклизацией и образованием 2-бензилфурана.

Органические производные свинца - бесцветные очень ядовитые жидкости. Один из методов их синтеза - действие алкилгалогенидов на сплав свинца с натрием:

4C2H5Cl + 4PbNa ® (C2H5)4Pb + 4NaCl + 3Pb. Действием газообразного HCl можно отщеплять от тетразамещенных свинца один алкильный радикал за другим, заменяя их на хлор. Соединения R4Pb разлагаются при нагревании с образованием тонкой пленки чистого металла. Такое разложение тетраметилсвинца было использовано для определения времени жизни свободных радикалов. Тетраэтилсвинец - антидетонатор моторного топлива.

Получение свинца. Количество добываемого свинца непрерывно возрастает. Если в 1800 во всем мире его было получено около 30 000 тонн, то в 1850 - 130 000 т, в 1875 - 320 000 т, в 1900 - 850 000 т, 1950 - почти 2 млн. т, а в настоящее время в год добывают около 5 млн. т. По объему производства свинец занимает четвертое место среди цветных металлов - после алюминия, меди и цинка.

Основной источник свинца - сульфидные полиметаллические руды, содержащие от 1 до 5% свинца. Руду концентрируют до содержания свинца 40 - 75%, затем подвергают обжигу: 2PbS + 3O2 ® 2PbO + 2SO2 и восстанавливают свинец коксом и оксидом углерода(II). Более экономичный, так называемый автогенный, способ заключается в проведении реакции PbS + 2PbO ® 3Pb + SO2 (PbO образуется при частичном обжиге PbS). Получаемый из руды свинец содержит от 3 до 7% примесей в виде меди, сурьмы, мышьяка, олова, алюминия, висмута а также золота и серебра. Их удаление (или выделение, если это экономически рентабельно), требует сложных и длительных операций. Очистку свинца можно проводить также методом электрохимического рафинирования. Электролитом служит водный раствор фторосиликата свинца PbSiF6. На катоде оседает чистый свинец, а примеси концентрируются в анодном шламе, содержащем много ценных компонентов, которые затем выделяют.

Свинец в организме человека. Соединения свинца ядовиты. Но очевидным это стало далеко не сразу. В прошлом покрытия гончарных изделий свинцовой глазурью, изготовление свинцовых водопроводных труб, использование свинцовых белил (особенно в косметических целях), применение свинцовых трубок в конденсаторах паров на винокуренных заводах - все это приводило к накоплению свинца в организме. Древние греки знали, что вино и кислые соки нельзя держать в глазурованных глиняных сосудах (глазурь содержала свинец), а вот римляне этим правилом пренебрегали. Джемс Линд, рекомендовавший в 1753 английскому адмиралтейству лимонный сок как средство против цинги для моряков в дальнем плавании, предостерегал от хранения сока в гончарных глазурованных изделиях. Тем не менее случаи отравления, в том числе и смертельные, наблюдались по той же причине и двести лет спустя.

Свинец проникает в организм через желудочно-кишечный тракт или дыхательную систему и разносится затем кровью по всему организму. Причем вдыхание свинцовой пыли значительно опаснее присутствия свинца в пище. В воздухе городов содержание свинца составляет в среднем от 0,15 до 0,5 мкг/м3. В районах, где расположены предприятия по переработке полиметаллических руд, эта концентрация выше.

Свинец накапливается в костях, частично замещая кальций в фосфате Са3(РО4)2. Попадая в мягкие ткани - мышцы, печень, почки, головной мозг, лимфатические узлы, свинец вызывает заболевание - плюмбизм. Как и многие другие тяжелые металлы, свинец (в виде ионов) блокирует деятельность некоторых ферментов. Было установлено, что их активность снижается в 100 раз при увеличении концентрации свинца в крови в 10 раз - с 10 до 100 микрограммов на 100 мл крови. При этом развивается анемия, поражаются кроветворная система, почки и мозг, снижается интеллект. Признак хронического отравления - серая кайма на деснах, расстройство нервной системы. Особенно опасен свинец для детей, так как он вызывает задержку в развитии. В то же время десятки миллионов детей во всем мире в возрасте до 6 лет имеют свинцовое отравление; основная причина - попадание в рот краски, содержащей свинец. Антидотом при отравлении может служить кальциевая соль этилендиаминтетрауксусной кислоты. В отравленном организме происходит замещение кальция на ионы свинца, которые удерживаются в этой соли очень прочно и в таком виде выводятся.

Свинец легко может попасть в организм с питьевой водой, если она соприкасалась с металлом: в присутствии углекислого газа в раствор медленно переходит растворимый гидрокарбонат Pb(HCO3)2. В Древнем Риме, где для подачи воды использовали свинцовые трубы, такое отравление было весьма распространенным, на что указывают анализы останков римлян. Причем отравлялись, в основном, богатые римляне, пользовавшиеся водопроводом, хранившие вино, оливковое масло и другие продукты в освинцованных сосудах, использовавшие содержащие свинец косметические средства. Достаточно, чтобы в литре воды был всего один миллиграмм свинца - и питье такой воды становится очень опасным. Это количество свинца так малó, что не изменяет ни запаха, ни вкуса воды, и только точные современные приборы могут его обнаружить.

Свинцовым отравлением некоторые историки объясняют и болезненность ряда русских царей. В 1633 в московском Кремле закончили строительство водопровода. Вода в него поступала из колодца в нижнем этаже Свибловой башни, стоявшей на слиянии Неглинной и Москвы-реки. Воду из колодца качали при помощи подъемной машины - взвода (с тех пор эта кремлевская башня называется Водовзводной). Машину приводили в движение лошади. Воду закачивали в большой бак, а оттуда вода сама по трубам текла на царскую кухню, в сады, другие места. Трубы были изготовлены из свинца; бак для воды изнутри тоже был выложен свинцовыми листами, чтобы вода из него не просачивалась в щели. Особенно много свинца накапливалось в воде за ночь, после ее неподвижного стояния в свинцовом баке и трубах.

Кремлевский «свинцовый водопровод» работал чуть больше 100 лет - его уничтожил пожар 1737. И в период действия этого водопровода русские цари жили меньше обычного. Так, царь и великий князь Иван V Алексеевич, сын царя Алексея Михайловича и первой жены его, Милославской, прожил всего 29 лет. Незадолго до смерти он выглядел дряхлым стариком. С детства он был, как писали тогда, «слабый и болезненный, немощен телом и рассудком, заикался, скорбен головою, страдал цингою и глазною болезнью». Из шести братьев царя пятеро не дожили до 20 лет. Некоторые ученые считают, что это последствия свинцового отравления. А вот шестой брат, Петр Алексеевич, будущий Петр I, избежал отравления - детство и отрочество он провел не в Кремле, а в подмосковных селах. Да и позднее он мало бывал в Кремле - много воевал, путешествовал по Европе, а потом и вовсе перенес столицу на берега Невы. Кстати, первый водопровод в Петербурге, который давал воду для дворцов и фонтанов Летнего сада, был деревянным. Его трубы были сделаны из бревен с просверленными в них отверстиями. Свинец же Петр использовал в военных целях - для отливки пуль.

А вот как пишут о свинцовом отравлении современные медицинские справочники: вялость, апатия, потеря памяти, раннее слабоумие, ослабление зрения, больные выглядят старше своих лет. Удивительно напоминает старинное описание царя Ивана Алексеевича!

Травились когда-то не только «свинцовой водой». Свинец широко использовали при изготовлении посуды (свинцовая глазурь), свинцовых белил, которыми окрашивали стены домов. Сейчас такое применение свинца строжайше запрещено. Белила, например, делают цинковые или титановые. Тем не менее у жителей промышленно развитых стран свинца в организме больше, чем у жителей отсталых и развивающихся стран, а у городских жителей больше, чем у сельских. Разница может быть огромной - в сотни раз.

Свинцовое загрязнение приобрело в 20 в. глобальный характер. Даже в снегах Гренландии его содержание за сто лет увеличилось в пять раз, а в центрах крупных городов в почве и растениях свинца в 25 раз больше, чем на окраинах! Загрязнение свинцом наблюдается в районах его добычи, а также в местах переработки и автострад, особенно если еще используется этилированный бензин. Немало свинца оседает на дне озер в виде охотничьей дроби. Каждый год в Мировой океан со сточными водами попадает более полумиллиона тонн этого ядовитого металла. А кто не видел выброшенные в мусорные ящики, а то и просто в канавы отработанные аккумуляторы! Пока свинец дешев, собирание и переработка его отходов невыгодна. Малая растворимость большинства соединений свинца, к счастью, не позволяет ему накапливаться в значительных количествах в воде. В водах Мирового океана его содержится в среднем 0,03 мкг/л (3·10-9%). Мало в среднем свинца и в живом веществе - 10-4%.

Применение свинца. Несмотря на ядовитость свинца, отказаться от него невозможно. Свинец дешев - вдвое дешевле алюминия, в 11 раз дешевле олова. После того как в 1859 французский физик Гастон Планте изобрел свинцовый аккумулятор, для изготовления аккумуляторных пластин с тех пор израсходовали миллионы тонн свинца; в настоящее время на эти цели уходит в ряде стран до 75% всего добываемого свинца! Постепенно снижается применение свинца для изготовления очень ядовитого антидетонатора - тетраэтилсвинца. Способность тетраэтилсвинца улучшать качество бензина было открыто группой молодых американских инженеров в 1922; в своих поисках они руководствовались периодической таблицей элементов, планомерно приближаясь к наиболее эффективному средству. С тех пор производство тетраэтилсвинца непрерывно росло; максимум приходится на конец 1960-х, когда только в США ежегодно с выхлопами выбрасывались сотни тысяч тонн свинца - по килограмму на каждого жителя! В последние годы применение этилированного бензина запрещено во многих регионах, и его производство снижается.

Мягкий и пластичный свинец, не ржавеющий в присутствии влаги, - незаменимый материал для изготовления оболочек электрических кабелей; на эти цели в мире расходуется до 20% свинца. Малоактивный свинец используют для изготовления кислотоупорной аппаратуры для химической промышленности, например, для облицовки реакторов, в которых получают соляную и серную кислоты. Тяжелый свинец хорошо задерживает губительные для человека излучения и потому свинцовые экраны используются для защиты работников рентгеновских кабинетов, в свинцовых контейнерах хранят и перевозят радиоактивные препараты. Свинец содержат также подшипниковые сплавы баббиты, «мягкие» припои (самый известный - «третник» - сплав свинца с оловом).

В строительстве свинец используют для уплотнения швов и создания сейсмостойких фундаментов. В военной технике - для изготовления шрапнели и сердечников пуль.

Илья Леенсон

ЛИТЕРАТУРА

A History of Technology. Vol. I - V. Oxford: Clarendon Press, 1956-1958
Chisolm J.J. Lead Poisoning. Scientific American, 1971, February
Свинец. Женева: изд-воООНиВОЗ, 1980
ПолянскийН.Г. Свинец. М., «Наука», 1986
Давыдова С.Л., Пименов Ю.Т., Милаева Е.Р. Ртуть, олово, свинец и их органические производные в окружающей среде. Астрахань, 2001

Свойства свинца

Существует не только свекольный или тростниковый , но и свинцовый. Так называют одно из соединений металла.

Ацетат выглядит как сладкая добавка к пище, — мелкие белого цвета или порошок, хорошо растворимый в воде.

Однако, свинцовый сахар не сладкий, да и есть его, не рекомендуется. Вещество содержит яд, коим являются как раз ионы металла.

Применяют ацетат только в ветеринарии исключительно наружно, поскольку обладает вяжущими свойствами.

Ядовитость некоторых соединений свинца, как это ни странно, используется во благо человека, но не насекомых.

Вещество под названием арсенат, содержащее металл, — отрава для вредителей полей, таких как долгоносик хлопковый и непарный шелкопряд.

Есть целый спектр и безобидных сочетаний свинца с другими элементами.

В сочетании с металл обладает сушащими свойствами, веществом обрабатывают картины, чтобы краска быстрее запустевала.

— Хромат свинца солнечного цвета. Его применяют для окрашивания тканей, .

— Без сульфата металла не обходятся аккумуляторы.

— Тетраэтилсвинец служит добавкой к машинному топливу, улучшает качественные параметры .

— Без сульфида металла не возможен обжиг посуды и изделий из .

Хлорид свинца замедляет рост опухолей, поэтому используется медиками в качестве мази.

Это, применение химических соединений свинца . В чистом же виде элемент пригождается в промышленности.

Применение свинца

Металл не благородный, зато, помогает получить драгоценные и в их чистом виде. Процесс называется купелирование.

В процессе плавления смеси и свинца под воздействием окисления, отделяется драгоценный металл без каких-либо примесей.

Добавляют свинец и в смеси, которые употребляют в качестве припоев.

Их применяют для спаивания между собой деталей . Сам по себе свинец не отличается эстетической красотой.

Не соприкасаясь с воздухом, он блестящий, бело-голубой. Но, стоит металлу прореагировать с кислородом в атмосфере, как он теряет лоск, покрывается непрозрачной, мутной пленкой. Так что, с эстетической точки зрения свинец не представляет ценности.

Зато, элемент под порядковым номером 82 в – герой многих литературных трудов. Писатели любят эпитет «свинцовый».

Обычно, он означает неимоверную тяжесть чего-либо. К примеру, фраза «свинцовые ноги » трактуется, как конечности, которыми невозможно передвигать из-за ощущения в них тяжести.

Металл №82, действительно, не легок, но далеко не самый тяжелый из известных веществ. К примеру, в кусочек свинца плавает на поверхности.

Так что, более точно другое литературное применение образа элемента. Понятие «свинцовый» употребляют по отношению к цвету.

Часто говорят «свинцовый цвет лица». Это значит что покровы нездоровой серо-синей окраски, такой, какую металл приобретает при соприкосновении с воздухом.

В переводе некоторых текстов можно встретить фразу «оловянные аккумуляторы».

Это издержки перевода текстов на литовском, латышском, болгарском языках не совсем компетентными людьми.

Дело в том, что слова свинец во многих странах просто нет. Этот элемент называют оловом.

Еще древние люди путали два похожих друг на друга металла. Правда, олово тысячелетия назад не удостоилось чести представлять какую-нибудь планету.

Другие металлы, известные с незапамятных времен, древние люди разделили по небесным телам. Не секрет, что символизировало Марс. Свинец же стал обозначать Сатурн.

82-ым элементом буквально напичкана земля и, это касается не только природных запасов металла, но и коммуникационных систем.

Свойства свинца спасают от коррозии линии электропередач, телеграфные провода. Их часто приходится прокладывать не по воздуху, а под водоемами или, просто, под землей.

Не обходятся без бело-голубого металла и водопроводные системы. В них элемент свинец – материал для запорных устройств. Они препятствуют незапланированному доступу, в коллекторы, к примеру.

Количество свинца во внешней среде влияет на уровень преступности. К такому выводу пришли ученые США.

Они обследовали все штаты страны, соотнесли цифры и выявили закономерность.

Там, где концентрация металл максимальна, совершается в 4 раза больше правонарушений, чем в областях с меньшими показателями элемента №82.

Ученые мужи даже нашли объяснение статистическим данным. Они предположили, что металл свинец способствует нарушению нейронных связей в мозге, разрушает некоторые химические соединения, необходимые для нормальной работы органа.

Возможно, это способствует перепрограммированию человека на более нестандартное и агрессивное поведение.

Кстати, свинец в истории человечества часто был связан именно с агрессией. Металл применяли в пытках.

Лили в расплавленном виде на кожные покровы, рот. В индии сплав заливали в уши представителям низшей касты, если те подслушали разговоры своих высших собратьев.

А в Венеции для опасных преступников делали свинцовые потолки камер на верхнем этаже тюрьмы.

В жару они раскалялись, — узники изнывали от температур и духоты. В прохладную погоду, напротив, в помещениях было очень холодно.

Но, к счастью, сейчас металл №82 используют, в основном, в благих целях. Основной добытчик свинца – КНР.

В Поднебесной добывают около 2-х миллионов тонн элемента в год. Для сравнения, все запасы России равны лишь 17-ти миллионам тонн. Большинство из них скрыты в недрах Приморского, Алтайского, Красноярского краев.

Свинец – это химический элемент с атомным номером 82 и символом Pb (от латинского plumbum – слиток). Это тяжелый металл с плотностью, превышающей плотность большинства обычных материалов; свинец мягкий, податливый и плавится при относительно низких температурах. Свежесрубленный свинец имеет голубовато-белый оттенок; он притупляется до тускло-серого при воздействии воздуха. Свинец имеет второй по величине атомный номер классически устойчивых элементов и стоит в конце трех основных цепочек распада более тяжелых элементов. Свинец является относительно нереактивным постпереходным элементом. Его слабый металлический характер иллюстрируется его амфотерной природой (оксиды свинца и свинец реагируют как с кислотами, так и с основаниями) и склонностью к образованию ковалентных связей. Соединения свинца обычно находятся в состоянии окисления +2, а не +4, как правило, с более легкими членами углеродной группы. Исключения, в основном, ограничены органическими соединениями. Как и более легкие члены этой группы, свинец проявляет тенденцию связываться сам с собой; он может образовывать цепи, кольца и многогранные структуры. Свинец легко извлекается из свинцовых руд и был известен уже доисторическим людям в Западной Азии. Основная руда свинца, галена, часто содержит в себе серебро, и интерес к серебру способствовал широкомасштабной экстракции свинца и его использованию в Древнем Риме. Производство свинца сократилось после падения Римской империи и не доходило до тех же уровней вплоть до промышленной революции. В настоящее время, мировое производство свинца составляет около десяти миллионов тонн в год; вторичная добыча от переработки составляет более половины от этого количества. Свинец обладает несколькими свойствами, которые делают его полезным: высокая плотность, низкая температура плавления, пластичность и относительная инертность к окислению. В сочетании с относительным изобилием и низкой стоимостью, эти факторы привели к широкому использованию свинца в строительстве, сантехнике, производстве батарей, пуль, весов, припоев, сплавов олова со свинцом, плавких сплавов и радиационной защите. В конце 19-го века, свинец был признан высокотоксичным, и с тех пор его применение было постепенно сокращено. Свинец является нейротоксином, который накапливается в мягких тканях и костях, повреждая нервную систему и вызывая нарушения головного мозга, а у млекопитающих – расстройства крови.

Физические свойства

Атомные свойства

Атом свинца имеет 82 электрона, расположенных в электронной конфигурации 4f145d106s26p2. Объединенная первая и вторая энергии ионизации – полная энергия, необходимая для удаления двух 6p электронов – близка к энергии олова, верхнего соседа свинца в углеродной группе. Это необычно; энергии ионизации обычно идут вниз по группе, так как внешние электроны элемента становятся более отдаленными от ядра и более экранированы меньшими орбиталями. Сходство энергий ионизации обусловлено сокращением лантанидов – уменьшением радиусов элементов из лантана (атомный номер 57) до лютеция (71) и относительно малыми радиусами элементов после гафния (72). Это связано с плохим экранированием ядра электронами лантанида. Объединенные первые четыре энергии ионизации свинца превышают объёмы олова , вопреки предсказаниям периодических тенденций. Релятивистские эффекты, которые становятся значительными в более тяжелых атомах, способствуют такому поведению. Одним из таких эффектов является эффект инертной пары: электроны 6s свинца неохотно участвуют в связывании, делая расстояние между ближайшими атомами в кристаллическом свинце необычайно длинными . Более легкие углеродные группы свинца образуют стабильные или метастабильные аллотропы с тетраэдрически координированной и ковалентно связанной алмазной кубической структурой. Энергетические уровни их внешних s- и p-орбиталей достаточно близки, чтобы позволить смешивать их с четырьмя гибридными sp3-орбиталями. В свинце, эффект инертных пар увеличивает расстояние между его s- и p-орбиталями, и разрыв не может быть преодолен энергией, которая будет высвобождаться дополнительными связями после гибридизации. В отличие от алмазной кубической структуры, свинец образует металлические связи, в которых только p-электроны делокализуются и разделяются между ионами Pb2 +. Следовательно, свинец имеет гранецентрированную кубическую структуру, такую как двухвалентные металлы одинакового размера, кальций и стронций.

Большие объемы

Чистый свинец имеет яркий серебристый цвет с оттенком синего. Он тускнеет при контакте с влажным воздухом, и его оттенок зависит от преобладающих условий. Характерные свойства свинца включают высокую плотность, пластичность и высокую устойчивость к коррозии (из-за пассивации). Плотная кубическая структура и высокий атомный вес свинца приводит к плотности 11,34 г / см3, что больше, чем у обычных металлов, таких как железо (7,87 г / см3), медь (8,93 г / см3) и цинк (7,14 г / см3). Некоторые более редкие металлы имеют большую плотность: вольфрам и золото – 19,3 г / см3, а осмий – самый плотный металл – имеет плотность 22,59 г / см3, что почти в два раза больше, чем у свинца . Свинец – очень мягкий металл с твердостью по Моосу 1,5; его можно поцарапать ногтем. Он довольно ковкий и в некотором смысле пластичный. Объемный модуль свинца – мера его легкости сжимаемости – составляет 45,8 ГПа. Для сравнения, объемный модуль алюминия составляет 75,2 ГПа; меди – 137,8 ГПа; а мягкой стали – 160-169 ГПа. Прочность на растяжение при 12-17 МПа низка (у алюминия в 6 раз выше, у меди – в 10 раз, а у мягкой стали – в 15 раз); её можно усилить добавлением небольшого количества меди или сурьмы. Точка плавления свинца – 327,5 ° C (621,5 ° F) – является низкой по сравнению с большинством металлов. Его температура кипения составляет 1749 °C (3180 °F) и является самой низкой среди элементов углеродной группы. Электросопротивление свинца при 20 °С составляет 192 нанометра, что почти на порядок выше, чем у других промышленных металлов (медь при 15,43 nΩ·m, золото 20,51 nΩ·m и алюминий при 24,15 nΩ·m). Свинец представляет собой сверхпроводник при температурах ниже 7,19 К, это самая высокая критическая температура всех сверхпроводников I типа. Свинец является третьим по величине элементным сверхпроводником.

Изотопы свинца

Естественный свинец состоит из четырех устойчивых изотопов с массовым числом 204, 206, 207 и 208, и следов пяти короткоживущих радиоизотопов . Большое количество изотопов согласуется с тем, что число атомов свинца является четным. Свинец имеет магическое число протонов (82), для которых модель ядерной оболочки точно предсказывает особенно стабильное ядро. Свинец-208 имеет 126 нейтронов, другое магическое число, которое может объяснить, почему свинец-208 необычайно устойчив. Учитывая его высокий атомный номер, свинец является самым тяжелым элементом, естественные изотопы которого считаются стабильными. Это звание ранее принадлежало висмуту, имеющему атомный номер 83, до тех пор, пока в 2003 году не было обнаружено, что его единственный изначальный изотоп, висмут-209, очень медленно распадается. Четыре стабильных изотопа свинца теоретически могли пройти альфа-распад на изотопы ртути с высвобождением энергии, но это нигде не наблюдалось, их предсказанные периоды полураспада варьируются от 1035 до 10189 лет. Три стабильных изотопа встречаются в трех из четырех основных цепей распада: свинец-206, свинец-207 и свинец-208 являются конечными продуктами распада урана-238, урана-235 и тория-232 соответственно; эти цепочки распада называются сериями урана, сериями актиния и сериями тория. Их изотопная концентрация в образце природной породы очень зависит от наличия этих трех родительских изотопов урана и тория. Например, относительное обилие свинца-208 может варьироваться от 52% в нормальных образцах до 90% в ториевых рудах, поэтому стандартная атомная масса свинца дается только в одном знаке после запятой . С течением времени, отношение свинца-206 и свинца-207 к свинцу-204 увеличивается, поскольку первые два дополняются радиоактивным распадом более тяжелых элементов, в то время как последний не дополняется; это позволяет осуществлять связи свинец-свинец. Поскольку уран распадается на свинец, их относительные количества меняются; это основа для создания урана-свинца. Помимо стабильных изотопов, составляющих почти весь свинец, который существует естественным образом, имеются следовые количества нескольких радиоактивных изотопов. Один из них – свинец-210; хотя его период полураспада составляет всего 22,3 года, в природе присутствуют лишь небольшие количества этого изотопа, потому что свинец-210 вырабатывается длинным циклом распада, который начинается с урана-238 (который присутствует на Земле миллиарды лет). В цепях распада урана-235, тория-232 и урана-238 присутствуют свинец-211, -212 и -214, поэтому естественным образом обнаруживаются следы всех этих трех изотопов свинца. Небольшие следы свинца-209 возникают из-за очень редкого кластерного распада радия-223, одного из дочерних продуктов природного урана-235. Свинец-210 особенно полезен для того, чтобы помочь идентифицировать возраст образцов путем измерения его отношения к свинцу-206 (оба изотопа присутствуют в одной цепи распада). Всего было синтезировано 43 изотопа свинца, с массовыми номерами 178-220. Свинец-205 является наиболее стабильным с периодом полураспада около 1,5 × 107 лет. [I] Вторым по стабильности является свинец-202, период полураспада которого составляет около 53000 лет, дольше, чем у любого естественного следового радиоизотопа. Оба являются вымершими радионуклидами, которые были произведены в звездах вместе со стабильными изотопами свинца, но давно уже распались.

Химия

Большой объем свинца, подвергнутый воздействию влажного воздуха, образует защитный слой различного состава. Сульфит или хлорид также могут присутствовать в городских или морских условиях. Этот слой делает большой объем свинца эффективно химически инертным в воздухе. Мелкопорошковый свинец, как и многие металлы, является пирофорным и горит голубовато-белым пламенем . Фтор вступает в реакцию со свинцом при комнатной температуре, образуя фторид свинца (II). Реакция с хлором аналогична, но требует нагревания, так как полученный хлоридный слой уменьшает реакционную способность элементов. Расплавленный свинец реагирует с халькогенами с образованием халькогенидов свинца (II). Металл свинца не подвергается воздействию разбавленной серной кислоты, а растворяется в концентрированной форме. Он медленно реагирует с соляной кислотой и энергично – с азотной кислотой с образованием оксидов азота и нитрата свинца (II) . Органические кислоты, такие как уксусная кислота, растворяют свинец в присутствии кислорода. Концентрированные щелочи растворяют свинец и формируют плюмбиты.

Неорганические соединения

Свинец имеет два основных состояния окисления: +4 и +2. Четырехвалентное состояние является общим для углеродной группы. Двухвалентное состояние редко встречается для углерода и кремния, незначительно для германия, важно (но не преобладающее) для олова, и более важно для свинца. Это объясняется релятивистскими эффектами, в частности, эффектом инертных пар, который проявляется, когда наблюдается большая разница в электроотрицательности между свинцовыми и оксидными, галогенидными или нитридными анионами, что приводит к значительным частичным положительным зарядам свинца. В результате наблюдается более сильное сжатие 6s-орбитали свинца, чем 6p-орбитали, что делает свинец весьма инертным в ионных соединениях. Это менее применимо к соединениям, в которых свинец образует ковалентные связи с элементами аналогичной электроотрицательности, такими как углерод в органолептических соединениях. В таких соединениях, 6s и 6p-орбитали имеют одинаковый размер, и sp3-гибридизация все еще энергетически выгодна. Свинец, как и углерод, преимущественно четырехвалентный в таких соединениях. Относительно большая разница в электроотрицательности свинца (II) при 1,87 и свинца (IV) составляет 2,33. Эта разница подчеркивает обратную тенденцию повышения устойчивости состояния окисления +4 с понижением концентрации углерода; олово, для сравнения, имеет значения 1,80 в состоянии окисления +2 и 1,96 в состоянии +4.

Соединения свинца (II) характерны для неорганической химии свинца. Даже сильные окислители, такие как фтор и хлор, реагируют со свинцом при комнатной температуре, образуя только PbF2 и PbCl2 . Большинство из них менее ионны, чем соединения других металлов, и поэтому они в значительной степени нерастворимы. Ионы свинца (II) обычно бесцветны в растворе и частично гидролизуются с образованием Pb (OH)+ и, наконец, Pb4 (OH) 4 (в котором гидроксильные ионы действуют как мостиковые лиганды). В отличие от ионов олова (II), они не являются восстанавливающими агентами. Методы идентификации присутствия иона Pb2+ в воде обычно полагаются на осаждение хлорида свинца (II) с использованием разбавленной соляной кислоты. Поскольку хлоридная соль немного растворима в воде, затем предпринимается попытка осаждения сульфида свинца (II) путем барботирования сероводорода через раствор. Моноксид свинца существует в двух полиморфах: красный α-PbO и желтый β-PbO, последний стабилен только при температуре выше 488 °C. Это наиболее часто используемое соединение свинца. Гидроокись свинца (II) может существовать только в растворе; известно, что она образует плюмбитные анионы. Свинец обычно реагирует с более тяжелыми халькогенами. Сульфид свинца представляет собой полупроводник, фотопроводник и чрезвычайно чувствительный детектор инфракрасного излучения. Другие два халькогенида, селенид свинца и теллурид свинца, также являются фотопроводниками. Они необычны тем, что их цвет становится тем светлее, чем ниже группа. Дигалиды свинца хорошо описаны; они включают диастатид и смешанные галогениды, такие как PbFCl. Относительная нерастворимость последних является полезной основой для гравиметрического определения фтора. Дифторид был первым твердым ионопроводящим соединением, которое было обнаружено (в 1834 году Майклом Фарадеем). Другие дигалогениды разлагаются при воздействии ультрафиолетового или видимого света, особенно дийодид. Известно много псевдогалогенидов свинца. Свинец (II) образует большое количество галогенидных координационных комплексов, таких как 2-, 4- и анион n5n-цепи. Сульфат свинца (II) нерастворим в воде, как и сульфаты других тяжелых двухвалентных катионов. Нитрат свинца (II) и ацетат свинца (II) являются очень растворимыми, и это используется при синтезе других соединений свинца .

Известно несколько неорганических соединений свинца (IV), и они обычно являются сильными окислителями или существуют только в сильнокислотных растворах . Оксид свинца (II) дает смешанный оксид при дальнейшем окислении, Pb3O4. Он описывается как оксид свинца (II, IV) или структурно 2PbO·PbO2 и является наиболее известным смешанным валентным соединением свинца. Двуокись свинца является сильным окислителем, способным окислять хлористоводородную кислоту до газообразного хлора. Это связано с тем, что ожидаемый PbCl4, который будет производиться, нестабилен и спонтанно разлагается до PbCl2 и Cl2. Аналогично монооксиду свинца, диоксид свинца способен образовывать вспененные анионы. Дисульфид свинца и диселенид свинца устойчивы при высоких давлениях. Тетрафторид свинца, желтый кристаллический порошок, стабилен, но в меньшей степени, чем дифторид. Тетрахлорид свинца (желтое масло) разлагается при комнатной температуре, тетрабромид свинца еще менее стабилен, а существование тетрайодида свинца оспаривается.

Другие состояния окисления

Некоторые соединения свинца существуют в формальных состояниях окисления, отличных от +4 или +2. Свинец (III) может быть получен в качестве промежуточного соединения между свинцом (II) и свинцом (IV) в более крупных органолептических комплексах; это состояние окисления нестабильно, так как и ион свинца (III), и более крупные комплексы, содержащие его, являются радикалами. То же самое относится и к свинцу (I), который можно найти в таких видах. Известны многочисленные смешанные оксиды свинца (II, IV). Когда PbO2 нагревается на воздухе, он становится Pb12O19 при 293 °C, Pb12O17 при 351 °C, Pb3O4 при 374 °C и, наконец, PbO при 605 °C. Еще один полуторный оксид Pb2O3 может быть получен при высоком давлении наряду с несколькими нестехиометрическими фазами. Многие из них показывают дефектные структуры флюорита, в которых некоторые атомы кислорода заменяются пустотами: PbO можно рассматривать как имеющий такую структуру, причем каждый альтернативный слой атомов кислорода отсутствует. Отрицательные состояния окисления могут возникать как фазы Цинтля, как либо в случае Ba2Pb, причем свинец формально представляет собой свинец (-IV), или как в случае чувствительных к кислороду кольцеобразных или полиэдрических кластерных ионов, таких как тригональный бипирамидный ион Pb52-i, где два свинцовых атома – свинец (- I), а три – свинец (0). В таких анионах, каждый атом находится на полиэдральной вершине и вносит два электрона в каждую ковалентную связь по краю от их sp3-гибридных орбиталей, а остальные два являются внешней одиночной парой. Они могут быть сформированы в жидком аммиаке путем восстановления свинца натрием.

Свинецорганическое соединение

Свинец может образовывать многосвязные цепи, и это свойство он разделяет с более легким своим гомологом, углеродом. Его способность к этому намного меньше, потому что энергия связи Pb-Pb в три с половиной раза ниже, чем у C-C-связи. Сам с собой, свинец может строить металло-металлические связи до третьего порядка. С углеродом, свинец формирует свинецорганические соединения, сходные с, но обычно менее стабильные, чем типичные органические соединения (из-за слабости связи Pb-C). Это делает металлоорганическую химию свинца гораздо менее широкой, чем у олова. Свинец преимущественно образует органические соединения (IV), даже если это образование начинается с неорганических реагентов свинца (II); известно очень мало соединений органолата (II). Наиболее хорошо охарактеризованными исключениями являются Pb 2 и Pb (η5-C5H5)2. Свинцовый аналог простейшего органического соединения, метан, является плюмбаном. Плюмбан может быть получен в реакции между металлическим свинцом и атомарным водородом. Два простых производных, тетраметиладин и тетраэтилэлид, являются наиболее известными свинецорганическими соединениями. Эти соединения являются относительно стабильными: тетраэтилэлид начинает разлагаться только при 100 °С или при воздействии солнечного света или ультрафиолетового излучения. (Тетрафенилсвинец еще более термически устойчив, разлагаясь при 270 °C). С натрием-металлом, свинец легко образует эквимолярный сплав, который реагирует с алкилгалогенидами с образованием металлоорганических соединений, таких как тетраэтилэлид. Окислительная природа многих органоорганических соединений также используется: тетраацетат свинца является важным лабораторным реагентом для окисления в органической химии, а тетраэтилэлид производился в больших количествах, чем любое другое металлоорганическое соединение . Другие органические соединения менее химически стабильны. Для многих органических соединений не существует свинцового аналога.

Происхождение и распространенность

В космосе

Распространенность свинца на частицу в Солнечной системе составляет 0,121 чнм (частей на миллиард). Эта цифра в два с половиной раза выше, чем у платины, в восемь раз выше, чем у ртути, и в 17 раз выше, чем у золота. Количество свинца во Вселенной медленно увеличивается, поскольку самые тяжелые атомы (все из которых нестабильны) постепенно распадаются на свинец. Обилие свинца в Солнечной системе с момента её образования 4,5 миллиарда лет назад увеличилось примерно на 0,75%. Таблица численности изотопов солнечной системы показывает, что свинец, несмотря на его относительно высокий атомный номер, более распространен, чем большинство других элементов с атомными числами больше 40. Изначальный свинец, который содержит изотопы свинца-204, свинца-206, свинца-207 и свинца-208-, в основном, были созданы в результате повторяющихся процессов захвата нейтронов, происходящих в звездах. Двумя основными режимами захвата являются s- и r-процессы. В s-процессе (s означает «медленный»), захваты разделяются годами или десятилетиями, позволяя менее стабильным ядрам проходить бета-распад. Устойчивое ядро таллия-203 может захватить нейтрон и стать таллием-204; это вещество подвергается бета-распаду, давая стабильный свинец-204; при захвате другого нейтрона, он становится свинцом-205, период полураспада которого составляет около 15 миллионов лет. Дальнейшие захваты приводят к образованию свинца-206, свинца-207 и свинца-208. При захвате другого нейтрона, свинец-208 становится свинцом-209, который быстро распадается на висмут-209. При захвате другого нейтрона, висмут-209 становится висмутом-210, бета которого распадается на полоний-210, а альфа распадается на свинец-206. Цикл, следовательно, заканчивается у свинца-206, свинца-207, свинца-208 и висмута-209. В r-процессе (r означает «быстрый»), захваты бывают быстрее, чем ядра могут распадаться. Это происходит в средах с высокой плотностью нейтронов, таких как сверхновая или слияние двух нейтронных звезд. Поток нейтронов может быть порядка 1022 нейтронов на квадратный сантиметр в секунду. R-процесс не формирует столько же свинца, сколько s-процесс. Он имеет тенденцию останавливаться, как только нейтрон-богатые ядра достигают 126 нейтронов. В этот момент, нейтроны располагаются в полных оболочках в атомном ядре, и становится сложнее энергетически вместить большее их количество. Когда поток нейтронов спадает, их бета-ядра распадаются на стабильные изотопы осмия, иридия и платины.

На Земле

Свинец классифицируется как халькофил по классификации Гольдшмидта, что означает, что он обычно встречается в сочетании с серой. Он редко встречается в своей естественной металлической форме. Многие минералы свинца относительно легки и, в течение истории Земли, остались в коре, а не погружались глубже в недра Земли. Это объясняет относительно высокий уровень содержания свинца в коре, 14 чнм; это 38-й наиболее распространенный элемент в коре. Основным свинцовым минералом является галенит (PbS), который, в основном, содержится в цинковых рудах. Большинство других минералов свинца в какой-то мере связаны с галенитом; буланжерит, Pb5Sb4S11, представляет собой смешанный сульфид, полученный из галенита; англезит, PbSO4, является продуктом окисления галенита; а серусит или белая свинцовая руда, PbCO3, является продуктом разложения галенита. Мышьяк, олово, сурьма, серебро, золото, медь и висмут являются распространенными примесями в свинцовых минералах. Мировые ресурсы свинца превышают 2 миллиарда тонн. Значительные запасы свинца были обнаружены в Австралии, Китае, Ирландии, Мексике, Перу, Португалии, России и США. Глобальные резервы – ресурсы, которые экономически целесообразно добывать – в 2015 году составили 89 млн. тонн, 35 млн из которых находятся в Австралии, 15,8 млн – в Китае, и 9,2 млн. – в России. Типичные фоновые концентрации свинца не превышают 0,1 мкг / м3 в атмосфере; 100 мг / кг в почве; и 5 мкг / л в пресной воде и морской воде.

Этимология

Современное английское слово «lead» (свинец) имеет германское происхождение; оно происходит из среднеанглийского и староанглийского языка (со знаком долготы над гласным «е», означающим, что гласный звук этой буквы длинный). Староанглийское слово происходит от гипотетического реконструированного протогерманского *lauda- («lead»). Согласно принятой лингвистической теории, это слово «родило» потомков на нескольких германских языках с точно таким же значением. Происхождение протогерманского *lauda не однозначно в лингвистическом сообществе. Согласно одной из гипотез, это слово является производным от протоиндоевропейского *lAudh- («свинец»). Согласно другой гипотезе, это слово заимствовано из прото-кельтского * ɸloud-io- («свинец»). Это слово связано с латинским plumbum, который давал этому элементу химический символ Pb. Слово *ɸloud-io- также может быть источником протогерманского *bliwa- (что также означает «свинец»), из которого вытекает немецкое Blei. Название химического элемента не связано с глаголом такого же написания, полученного из протогерманского *layijan- («to lead»).

История

Предыстория и ранняя история

Металлические свинцовые бусины, относящиеся к 7000-6500 г. до н.э., найденные в Малой Азии, могут представлять собой первый пример плавки металлов. В то время, у свинца было несколько применений (если вообще было) из-за его мягкости и блеклого внешнего вида. Основной причиной распространения производства свинца была его связь с серебром, которое может быть получено путем сжигания галенита (общего свинцового минерала). Древние египтяне первыми использовали свинец в косметике, что распространилось на Древнюю Грецию и за ее пределы. Египтяне, возможно, использовали свинец в качестве грузила в рыболовных сетях, а также при изготовлении глазури, очков, эмали и украшений. Различные цивилизации Плодородного Полумесяца использовали свинец в качестве письменного материала, как валюту и в строительстве. Свинец использовался в древнекитайском королевском дворе в качестве стимулятора, в качестве валюты и в качестве противозачаточного средства. В цивилизации долины Инда и у мезоамериканцев, свинец использовался для изготовления амулетов; восточные и южноафриканские народы использовали свинец при волочении проволоки.

Классическая эпоха

Поскольку серебро широко использовалось в качестве декоративного материала и средства обмена, свинцовые отложения стали обрабатываться в Малой Азии с 3000 г. до н.э.; позже месторождения свинца были разработаны в Эгейском и Лорионском районах. Эти три региона, в совокупности, доминировали в производстве добытого свинца до приблизительно 1200 г. до н.э. С 2000 года до н.э., финикийцы работали на месторождениях на Иберийском полуострове; к 1600 г. до н.э. добыча свинца существовала на Кипре, в Греции и на Сицилии . Территориальная экспансия Рима в Европе и Средиземноморье, а также развитие горной промышленности привели к тому, что эта область стала крупнейшим производителем свинца в классическую эпоху, при этом ежегодный объем производства достиг 80000 тонн. Как и их предшественники, римляне получали свинец, главным образом, как побочный продукт плавки серебра. Ведущими добытчиками были Центральная Европа, Британия, Балканы, Греция, Анатолия и Испания, на долю которых приходится 40% мирового производства свинца. Свинец использовался для изготовления водопроводных труб в Римской империи; латинское слово, обозначающее этот металл, plumbum, является источником английского слова «plumbing» (сантехника). Легкость в обращении с данным металлом и его устойчивость к коррозии обеспечили его широкое применение в других областях, включая фармацевтические препараты, кровельные материалы, валюту и военное обеспечение. Писатели того времени, такие как Катон-старший, Колумелла и Плиний Старший, рекомендовали свинцовые сосуды для приготовления подсластителей и консервантов, добавленных к вину и пище. Свинец давал приятный вкус из-за образования «сахара свинца» (ацетат свинца (II), тогда как медные или бронзовые сосуды могли придать пище горький вкус из-за образования вердигров. Этот металл был, безусловно, наиболее распространенным материалом в классической древности, и уместно сослаться на (римскую) Свинцовую Эру. Свинец для римлян находился в столь же широком употреблении, как для нас пластик. Римский автор Витрувий сообщил об опасностях, которые свинец может представлять для здоровья, и современные авторы предположили, что отравление свинцом сыграло важную роль в упадке Римской империи. [l] Другие исследователи критиковали такие утверждения, указывая, например, что не все боли в животе были вызваны отравлением свинцом. Согласно археологическим исследованиям, римские свинцовые трубы увеличили уровни свинца в водопроводной воде, но такой эффект «вряд ли был бы действительно вредным». Жертв отравления свинцом стали называть «сатурнинами», в честь страшного отца богов Сатурна. По ассоциации с этим, свинец считался «отцом» всех металлов. Его статус в римском обществе был низким, поскольку он был легко доступенным и дешевым.

Путаница с оловом и сурьмой

В классическую эпоху (и даже до XVII века), олово часто не отличали от свинца: римляне называли свинец plumbum nigrum («черный свинец»), а олово – plumbum candidum («светлый свинец»). Связь свинца и олова можно проследить и в других языках: слово «olovo» на чешском языке означает «свинец», но на русском языке родственное олово означает «олово». Кроме этого, свинец имеет близкое отношение к сурьме: оба элемента обычно встречаются в виде сульфидов (галена и стибнит), часто вместе. Плиний неправильно написал, что стибнит дает при нагревании свинец вместо сурьмы. В таких странах, как Турция и Индия, первоначально персидское название сурьмы относилось к сульфиду сурьмы или сульфиду свинца, а на некоторых языках, таких как русский, называлось сурьмой.

Средние века и Ренессанс

Добыча свинца в Западной Европе сократилась после падения Западной Римской империи, причем Аравийская Иберия была единственным регионом, имеющим значительный выход свинца. Наибольшее производство свинца наблюдалось в Южной и Восточной Азии, особенно в Китае и Индии, где добыча свинца сильно увеличивалась. В Европе, производство свинца начало возрождаться только в 11 и 12 веках, где свинец снова начал использоваться для кладки кровли и трубопроводов. Начиная с 13-го века, свинец использовался для создания витражей. В европейских и арабских традициях алхимии, свинец (символ Сатурна в европейской традиции) считался нечистым базовым металлом, который путем разделения, очистки и балансировки его составных частей мог быть преобразован в чистое золото. В течение этого периода, свинец все чаще использовался для загрязнения вина. Использование такого вина было запрещено в 1498 году приказом Папы, поскольку оно считалось непригодным для использования в священных обрядах, но его продолжали пить, что приводило к массовым отравлениям вплоть до конца 18-го века. Свинец был ключевым материалом в частях печатного станка, который был изобретен около 1440 года; печатные рабочие обычно вдыхали свинцовую пыль, что вызывало отравления свинцом. Огнестрельное оружие было изобретено примерно в то же время, и свинец, несмотря на то, что был дороже железа, стал основным материалом для изготовления пуль. Он был менее опасен для железных орудийных стволов, имел более высокую плотность (что способствовало лучшему удержанию скорости), а его более низкая точка плавления упрощала производство пуль, поскольку они могли быть изготовлены с использованием древесного огня. Свинец, в виде венецианской керамики, широко использовался в косметических средствах среди западноевропейской аристократии, поскольку отбеленные лица считались признаком скромности . Эта практика позже расширилась до белых париков и карандашей для глаз и исчезла только во время французской революции, в конце 18 века. Подобная мода появилась в Японии в XVIII веке с появлением гейш, практика, которая продолжалась в течение 20-го века. «Белые лица воплощали добродетель японских женщин», при этом в качестве отбеливателя обычно использовался свинец.

За пределами Европы и Азии

В Новом Свете, свинец стал производиться вскоре после прибытия европейских поселенцев. Самое раннее зарегистрированное производство свинца датируется 1621 годом в английской колонии Вирджиния, спустя четырнадцать лет после её основания. В Австралии, первая шахта, открытая колонистами на континенте, была ведущей шахтой в 1841 году. В Африке, добыча и плавка свинца были известны в Бенуэ-Тауре и нижнем бассейне Конго, где свинец использовался для торговли с европейцами и в качестве валюты к 17 веку, задолго до борьбы за Африку.

Промышленная революция

Во второй половине 18 века, в Британии, а затем и в континентальной Европе и Соединенных Штатах, произошла индустриальная революция. Это был первый случай, когда темпы производства свинца где-либо в мире превысили темпы производства свинца в Риме . Британия была ведущим производителем свинца, однако, она потеряла этот статус к середине 19-го века с истощением своих шахт и с развитием добычи свинца в Германии, Испании и Соединенных Штатах. К 1900 году, Соединенные Штаты были лидерами мирового производства свинца, а другие неевропейские страны – Канада, Мексика и Австралия – начали значительное производство свинца; производство за пределами Европы увеличилось. Значительная доля спроса на свинец приходилась на водопровод и краски – свинцовые краски тогда регулярно использовались. В это время больше людей (рабочий класс) контактировали с металлами и увеличивались случаи отравления свинцом. Это привело к исследованию влияния потребления свинца на организм. Свинец оказался более опасным в своей дымовой форме, чем твердый металл. Была обнаружена связь между отравлением свинцом и подагрой; британский врач Альфред Баринг Гаррод отметил, что треть его пациентов с подагрой были водопроводчиками и художниками. Последствия постоянного попадания свинца в организм, включая психические расстройства, также изучались в XIX веке. Первые законы, направленные на снижение случаев отравления свинцом на фабриках, были введены в действие в 1870-х и 1880-х годах в Соединенном Королевстве.

Новое время

Дальнейшие свидетельства угрозы, которая связана со свинцом, были обнаружены в конце 19-го и начале 20-го веков. Механизмы вреда были лучше поняты, а также была задокументирована свинцовая слепота. Страны Европы и США приступили к усилиям по сокращению количества свинца, с которым люди вступали в контакт. В 1878 году Соединенное Королевство ввело обязательные обследования на фабриках и назначило первого медицинского инспектора заводов в 1898 году; в результате сообщалось о 25-кратном сокращении случаев отравления свинцом с 1900 по 1944 годы. Последним основным воздействием свинца на человека было добавление тетраэтилового эфира к бензину в качестве антидетонационного вещества, практика, которая появилась в Соединенных Штатах в 1921 году. Она была постепенно прекращена в Соединенных Штатах и Европейском союзе к 2000 году. Большинство европейских стран запретили свинцовую краску, обычно используемую из-за ее непрозрачности и водонепроницаемости для украшения интерьеров к 1930 году. Воздействие было значительным: в последней четверти 20-го века процент людей с избыточным уровнем свинца в крови снизился с более чем трех четвертей населения Соединенных Штатов до немногим более двух процентов. Основным продуктом из свинца к концу 20-го века была свинцово-аккумуляторная батарея, которая не представляла непосредственной угрозы для человека. С 1960 по 1990 годы производство свинца в Западном блоке выросло на треть. Доля мирового производства свинца в Восточном блоке увеличилась втрое с 10% до 30% с 1950 по 1990 годы, когда Советский Союз был крупнейшим в мире производителем свинца в середине 1970-х и 1980-х годов, а Китай начал обширное производство свинца в конце 20-го века. В отличие от европейских коммунистических стран, в середине 20-го века Китай был, в основном, неиндустриализированой страной; в 2004 году Китай превзошел Австралию как крупнейшего производителя свинца. Как и в случае европейской индустриализации, свинец негативно сказался на здоровье в Китае.

Производство

Производство свинца увеличивается во всем мире из-за его использования в свинцово-аккумуляторных батареях. Существуют две основные категории продукции: первичные, из руд; и вторичные, от лома. В 2014 году, из первичной продукции было произведено 4,58 млн. тонн свинца, а из вторичной – 5,64 млн. тонн. В этом году, тройку ведущих производителей добытого свинцового концентрата возглавили Китай, Австралия и Соединенные Штаты. Тройку производителей рафинированного свинца возглавили Китай, США и Южная Корея. Согласно докладу Международной ассоциации экспертов по металлам, сделанном в 2010 году, общий объем использования свинца, накопленный, выброшенный или рассеянный в окружающую среду на глобальном уровне на душу населения, составляет 8 кг. Значительная часть из этого объема приходится на более развитые страны (20-150 кг на душу населения), а не на менее развитые страны (1-4 кг на душу населения). Производственные процессы для первичного и вторичного свинца аналогичны. Некоторые первичные производственные заводы в настоящее время дополняют свою деятельность листами свинца, и эта тенденция, вероятно, будет увеличиваться в будущем. При адекватных методах производства, вторичный свинец неотличим от первичного свинца. Отходы металлолома от строительной торговли обычно довольно чисты и повторно расплавляются без необходимости плавки, хотя иногда требуется перегонка. Таким образом, производство вторичного свинца является более дешевым с точки зрения энергетических потребностей, чем производство первичного свинца, часто на 50% и более.

Основное

Большинство свинцовых руд содержат низкий процент свинца (богатые руды имеют типичное содержание свинца 3-8%), который должен быть сконцентрирован для извлечения. Во время первоначальной обработки, руды обычно подвергаются дроблению, отделению плотных сред, шлифованию, пенной флотации и сушке. Полученный концентрат с содержанием свинца 30-80% по массе (обычно 50-60%) затем превращается в (нечистый) свинцовый металл. Существует два основных способа сделать это: двухступенчатый процесс, включающий обжиг с последующим извлечением из доменной печи, осуществляемый в отдельных сосудах; или прямой процесс, в котором экстракция концентрата происходит в одном сосуде. Последний способ стал более распространенным, хотя первый по-прежнему значителен.

Двухстадийный процесс

Во-первых, сульфидный концентрат обжаривается на воздухе для окисления сульфида свинца: 2 PbS + 3 O2 → 2 PbO + 2 SO2 Первоначальный концентрат не был чистым сульфидом свинца, и обжиг дает оксид свинца и смесь сульфатов и силикатов свинца и других металлов, содержащихся в руде. Этот неочищенный оксид свинца восстанавливается в коксовой печи до (опять же нечистого) металла: 2 PbO + C → Pb + CO2 . Примеси, в основном, представляют собой мышьяк, сурьму, висмут, цинк, медь, серебро и золото. Расплав обрабатывают в реверберационной печи воздухом, паром и серой, которая окисляет примеси, за исключением серебра, золота и висмута. Окисленные загрязняющие вещества плавают в верхней части расплава и снимаются. Металлическое серебро и золото удаляются и извлекаются экономически с помощью процесса Паркса, в который цинк добавляется к свинцу. Цинк растворяет серебро и золото, оба из которых, не смешиваясь в свинце, могут быть разделены и извлечены. Обессеребрянный свинец освобождается висмутом методом Беттертона-Кролла, обрабатывая его металлическим кальцием и магнием. Полученные висмутсодержащие шлаки могут быть сняты. Очень чистый свинец может быть получен путем электролитической обработки плавленого свинца с использованием процесса Беттса. Аноды нечистого свинца и катоды чистого свинца помещают в электролит фторосиликата свинца (PbSiF6). После применения электрического потенциала, нечистый свинец на аноде растворяется и накладываются на катод, оставляя подавляющее большинство примесей в растворе.

Прямой процесс

В этом процессе, свинцовый слиток и шлак получают непосредственно из свинцовых концентратов. Сульфидный концентрат свинца расплавляется в печи и окисляется, образуя монооксид свинца. Углерод (кокс или угольный газ) добавляется к расплавленному заряду вместе с флюсами. Таким образом, монооксид свинца восстанавливается до металлического свинца в середине шлака, богатого монооксидом свинца. До 80% свинца в высококонцентрированных исходных концентратах можно получить в виде слитков; остальные 20% образуют шлак, богатый монооксидом свинца. Для низкосортного сырья, весь свинец может быть окислен до высокосортного шлака. Металлический свинец далее получают из высокосортных (25-40%) шлаков с помощью сжигания или впрыскивания с подводным топливом, с помощью вспомогательной электропечи или комбинации обоих методов.

Альтернативы

Продолжаются исследования более чистого и менее энергоемкого процесса добычи свинца; основным его недостатком является то, что либо слишком много свинца теряется в качестве отходов, либо альтернативные методы приводят к высокому содержанию серы в полученном свинцовом металле. Гидрометаллургическая экстракция, в которой аноды нечистого свинца погружены в электролит, и чистый свинец осаждаются на катод, является методом, который может иметь потенциал.

Вторичный метод

Плавление, являющееся неотъемлемой частью первичной продукции, часто пропускается во время вторичного производства. Это происходит только тогда, когда металлический свинец подвергся значительному окислению. Этот процесс аналогичен процессу первичной добычи в доменной печи или роторной печи, причем существенным отличием является большая изменчивость выходов. Процесс выплавки свинца – это более современный метод, который может выступать в качестве продолжения первичной продукции; аккумуляторная паста из отработанных свинцово-аккумуляторных батарей удаляет серу, обрабатывая ее щелочью, и затем обрабатывается в печи с угольным топливом в присутствии кислорода, что приводит к образованию нечистого свинца, причем сурьма является наиболее распространенной примесью. Переработка вторичного свинца аналогична переработке первичного свинца; Некоторые процессы очистки могут быть пропущены в зависимости от переработанного материала и его потенциального загрязнения, причем висмут и серебро чаще всего принимаются в качестве примесей. Из источников свинца для утилизации, свинцово-аккумуляторные батареи являются наиболее важными источниками; свинцовая труба, лист и оболочка кабеля также являются значительными.

Применения

Вопреки распространенному мнению, графит в деревянных карандашах никогда не делался из свинца. Когда карандаш был создан как инструмент для намотки графита, конкретный тип используемого графита был назван plumbago (в буквальном смысле – для свинца или свинцового макета).

Элементарная форма

Металл свинца имеет несколько полезных механических свойств, включая высокую плотность, низкую температуру плавления, пластичность и относительную инертность. Многие металлы превосходят свинец в некоторых из этих аспектов, но, как правило, они менее распространены и их труднее извлекать из руд. Токсичность свинца привела к поэтапному отказу от некоторых видов его использования. Свинец использовался для изготовления пуль с момента их изобретения в средние века. Свинец недорог; его низкая температура плавления означает, что стрелковые боеприпасы могут быть отлиты с минимальным использованием технического оборудования; кроме того, свинец плотнее других обычных металлов, что позволяет лучше удерживать скорость. Были высказаны опасения, что свинцовые пули, используемые для охоты, могут нанести вред окружающей среде. Его высокая плотность и устойчивость к коррозии были использованы в ряде связанных применений. Свинец используется в качестве киля на кораблях. Его вес позволяет ему уравновешивать эффект взвода ветра на парусах; будучи настолько плотным, он занимает небольшой объем и минимизирует водостойкость. Свинец используется при подводных погружениях, чтобы противостоять способности дайвера держаться на поверхности. В 1993 году, базу Пизанской башни в Пизе стабилизировали с помощью 600 тонн свинца. Из-за своей коррозионной стойкости, свинец используется как защитная оболочка для подводных кабелей. Свинец используется в архитектуре. Листы свинца используются в качестве кровельных материалов, при облицовке, оплавлении, при изготовлении водосточных желобов и соединений водосточных труб, а также парапетов на крыше. Свинцовые молдинги используются в качестве декоративного материала для фиксации свинцовых листов. Свинец все еще используется при изготовлении статуй и скульптур. В прошлом, свинец часто использовался для балансировки колес автомобилей; по экологическим причинам, это использование постепенно прекращается. Свинец добавляется к медным сплавам, таким как латунь и бронза, для улучшения их обрабатываемости и смазочных свойств. Будучи практически нерастворимым в меди, свинец образует твердые глобулы в несовершенствах по всему сплаву, такие как границы зерен. В низких концентрациях, а также в качестве смазки, глобулы препятствуют образованию стружки при работе сплава, тем самым улучшая обрабатываемость. В подшипниках используются медные сплавы с большей концентрацией свинца. Свинец обеспечивает смазку, а медь обеспечивает несущую опору. Благодаря своей высокой плотности, атомному номеру и формуемости, свинец используется в качестве барьера, поглощающего звук, вибрацию и излучение. Свинец не имеет естественных резонансных частот, в результате, лист свинца используется в качестве звукоизоляционного слоя в стенах, полах и потолках звуковых студий. Органические трубы часто изготавливаются из свинцового сплава, смешанного с различными количествами олова, чтобы контролировать тон каждой трубы. Свинец – это защитный материал, используемый от излучения в ядерной науке и в рентгеновских камерах: гамма-лучи поглощаются электронами. Атомы свинца плотно упакованы и плотность их электронов велика; большой атомный номер означает, что на атом приходится много электронов. Расплавленный свинец использовался в качестве охлаждающей жидкости для быстрых реакторов со свинцовым охлаждением. Наибольшее использование свинца наблюдалось в начале XXI века в свинцово-аккумуляторных батареях. Реакции в батарее между свинцом, диоксидом свинца и серной кислотой обеспечивают надежный источник напряжения. Свинец в батареях не подвергается непосредственному контакту с людьми, поэтому связан с меньшей угрозой токсичности. Суперконденсаторы, содержащие свинцово-аккумуляторные батареи, были установлены в киловаттах и мегаваттах в Австралии, Японии и США в области частотного регулирования, сглаживания солнечной энергии и для других применений. Эти батареи имеют более низкую плотность энергии и эффективность разряда заряда, чем литий-ионные батареи, но значительно дешевле. Свинец используется в высоковольтных силовых кабелях в качестве материала оболочки для предотвращения диффузии воды при теплоизоляции; такое использование уменьшается по мере постепенного прекращения использования свинца. В некоторых странах также сокращается использование свинца в припоях для электроники, чтобы уменьшить количество экологически опасных отходов. Свинец является одним из трех металлов, используемых в тесте Одди для музейных материалов, помогая обнаружить органические кислоты, альдегиды и кислые газы.

Соединения

Соединения свинца используются в качестве или в составе красящих агентов, окислителей, пластика, свечей, стекла и полупроводников. Красители на основе свинца используются в керамической глазури и стекле, особенно для красных и желтых оттенков. В качестве окислителей в органической химии используют тетраацетат свинца и диоксид свинца. Свинец часто используется в поливинилхлоридных покрытиях электрических шнуров. Его можно использовать для обработки свечных фитилей, чтобы обеспечить более продолжительное, более равномерное сжигание. Из-за токсичности свинца, европейские и североамериканские производители используют такие альтернативы, как цинк. Стекло свинца состоит из 12-28% оксида свинца. Он изменяет оптические характеристики стекла и уменьшает передачу ионизирующего излучения. Свинцовые полупроводники, такие как теллурид свинца, селенид свинца и антимонид свинца, используются в фотогальванических элементах и инфракрасных детекторах.

Биологические и экологические эффекты

Биологические эффекты

Свинец не имеет подтвержденной биологической роли. Его распространенность в организме человека, в среднем, составляет 120 мг у взрослого человека – его распространенность превосходит только цинк (2500 мг) и железо (4000 мг) среди тяжелых металлов. Соли свинца очень эффективно поглощаются телом. Небольшое количество свинца (1%) будет храниться в костях; остальное будет выводиться с мочой и фекалиями в течение нескольких недель после воздействия. Ребенок будет способен выводить из организма только около трети свинца. Постоянное воздействие свинца может привести к биоаккумуляции свинца.

Токсичность

Свинец – чрезвычайно ядовитый металл (при вдыхании или проглатывании), затрагивающий почти каждый орган и систему в организме человека. При уровне в воздухе 100 мг / м3, он представляет собой немедленную опасность для жизни и здоровья. Свинец быстро всасывается в кровоток. Основной причиной его токсичности является его склонность вмешиваться в правильное функционирование ферментов. Он делает это путем связывания с сульфгидрильными группами, обнаруженными на многих ферментах, или имитирует и вытесняет другие металлы, которые действуют как кофакторы во многих ферментативных реакциях. Среди основных металлов, с которыми взаимодействует свинец, находятся кальций, железо и цинк. Высокие уровни кальция и железа, как правило, обеспечивают некоторую защиту от отравления свинцом; низкие уровни вызывают повышенную восприимчивость.

Эффекты

Свинец может нанести серьезный ущерб мозгу и почкам и, в конечном счете, привести к смерти. Как и кальций, свинец может пересекать гематоэнцефалический барьер. Он разрушает миелиновые оболочки нейронов, уменьшает их количество, препятствует пути нейротрансмиссии и уменьшает рост нейронов. Симптомы отравления свинцом включают нефропатию, коликовые боли в животе и, возможно, слабость в пальцах, запястьях или лодыжках. Малое кровяное давление увеличивается, особенно у людей среднего и старшего возраста, что может вызывать анемию. У беременных женщин, высокий уровень воздействия свинца может вызывать выкидыш. Было показано, что хроническое воздействие высоких уровней свинца снижает фертильность у мужчин. В развивающемся мозге ребенка, свинец препятствует образованию синапсов в коре головного мозга, нейрохимическому развитию (в том числе нейротрансмиттеров) и организации ионных каналов. Раннее воздействие свинца на детей связано с повышенным риском нарушений сна и чрезмерной дневной сонливости в более позднем детском возрасте. Высокий уровень свинца в крови связан с задержкой полового созревания у девочек. Увеличение и снижение воздействия переносимого по воздуху свинца от сжигания тетраэтилсвинца в бензине в течение 20-го века связано с историческим ростом и снижением уровня преступности, однако, эта гипотеза не является общепринятой.

Лечение

Лечение отравления свинцом обычно включает введение димеркапрола и сукцимера. Острые случаи могут потребовать использования динатрия кальция эдетата, хелата кальция динатриевой соли этилендиаминтетрауксусной кислоты (ЭДТК). Свинец имеет большее сродство к свинцу, чем кальций, в результате чего хелат свинца образуется путем обмена и выводится с мочой, оставляя безвредный кальций.

Источники воздействия

Воздействие свинца является глобальной проблемой, поскольку добыча и плавка свинца распространены во многих странах мира. Отравление свинцом обычно происходит в результате приема пищи или воды, зараженной свинцом, и реже – в результате случайного попадания в организм загрязненной почвы, пыли или краски на основе свинца. Продукты морской воды могут содержать свинец, если вода подвергается воздействию промышленных вод. Плоды и овощи могут быть заражены высоким содержанием свинца в почвах, в которых они выращивались. Почва может быть загрязнена путем накопления твердых частиц из свинца в трубах, свинцовой краске и остаточных выбросов из этилированного бензина. Использование свинца в водопроводных трубах проблематично в районах с мягкой или кислой водой. Твердая вода образует нерастворимые слои в трубах, тогда как мягкая и кислая вода растворяет свинцовые трубы. Растворенный диоксид углерода в перевозимой воде может привести к образованию растворимого бикарбоната свинца; кислородсодержащая вода может аналогичным образом растворять свинец в виде гидроксида свинца (II). Питьевая вода со временем может вызывать проблемы со здоровьем из-за токсичности растворенного свинца. Чем тверже вода, тем больше она будет содержать бикарбоната и сульфата кальция, и тем больше внутренняя часть труб будет покрыта защитным слоем карбоната свинца или сульфата свинца. Проглатывание свинцовой краски является основным источником воздействия свинца на детей. По мере того как краска разрушается, она отслаивается, измельчается в пыль, а затем поступает в организм через контакт с руками или загрязненную пищу, воду или спирт. Проглатывание некоторых народных средств может привести к воздействию свинца или его соединений. Вдыхание – это второй важный путь воздействия свинца, в том числе для курящих, и особенно для работников, занятых свинцом. Сигаретный дым содержит, среди других токсичных веществ, радиоактивный свинец-210. Почти весь вдыхаемый свинец всасывается в тело; для приема внутрь, показатель составляет 20-70%, при этом дети поглощают больше свинца, чем взрослые. Кожное воздействие может быть значительным для узкой категории людей, работающих с органическими соединениями свинца. Скорость поглощения свинца в коже ниже для неорганического свинца.

Экология

Добыча, производство, использование и утилизация свинца и его продуктов вызвали значительное загрязнение почв и вод Земли. Атмосферные выбросы свинца находились на пике во время промышленной революции, а бензиновый период свинца был во второй половине двадцатого века. Повышенные концентрации свинца сохраняются в почвах и отложениях в постиндустриальных и городских районах; промышленные выбросы, в том числе, связанные со сжиганием угля, продолжаются во многих частях мира. Свинец может накапливаться в почвах, особенно с высоким содержанием органических веществ, где он сохраняется в течение от сотен до тысяч лет. Он может занять место других металлов в растениях и может накапливаться на их поверхностях, тем самым замедляя процесс фотосинтеза и предотвращая их рост или убивая их. Загрязнение почв и растений влияет на микроорганизмы и на животных. Пострадавшие животные имеют уменьшенную способность синтезировать эритроциты, что вызывает анемию. Аналитические методы определения свинца в окружающей среде включают спектрофотометрию, рентгеновскую флуоресценцию, атомную спектроскопию и электрохимические методы. Конкретный ион-селективный электрод был разработан на основе ионофора S, S"-метиленбиса (N, N-диизобутилдитиокарбамат).

Ограничение и восстановление

К середине 1980-х годов произошел значительный сдвиг в использовании свинца. В Соединенных Штатах, природоохранные правила сокращают или исключают использование свинца в не-аккумуляторных продуктах, включая бензин, краски, припои и системы водоснабжения. Устройства для контроля твердых частиц могут использоваться на угольных электростанциях для сбора выбросов свинца. Использование свинца еще более ограничено Директивой Европейского союза об ограничении использования опасных веществ. Использование свинцовых пуль для охоты и спортивной стрельбы было запрещено в Нидерландах в 1993 году, что привело к значительному сокращению выбросов свинца с 230 тонн в 1990 году до 47,5 тонн в 1995 году. В Соединенных Штатах Америки, Администрация профессиональной безопасности и здоровья установила допустимый предел воздействия свинца на рабочем месте на уровне 0,05 мг / м3 в течение 8-часового рабочего дня; это относится к металлическому свинцу, неорганическим свинцовым соединениям и свинцовым мылам. Национальный институт безопасности и гигиены труда США рекомендует, чтобы концентрации свинца в крови находились ниже 0,06 мг на 100 г крови. Свинец может все еще встречаться во вредных количествах в керамике, виниле (используемом для прокладки труб и изоляции электрических шнуров) и китайской латуни. В старых домах, все еще может содержаться свинцовая краска. Белая свинцовая краска была выведена из продажи в промышленно развитых странах, но желтый хромат свинца все ещё остается в употреблении. Удаление старой краски путем шлифования дает пыль, которую человек может вдыхать.

Поделиться