Основные положения хромосомной теории наследственности. Сцепленное наследование. Что значит явление сцепленного наследования Что означает гены не сцеплены

Такое понятие, как наследование признаков, широко изучается в генетике. Именно им объясняется сходство потомства и родителей. Любопытно, что некоторые проявления признаков наследуются совместно. Это явление, впервые подробно описанное ученым Т. Морганом, стало называться «сцепленное наследование». Поговорим о нем подробнее.

Как известно, каждый организм обладает определенным количеством генов. Хромосом же при этом - также строго ограниченная цифра. Для сравнения: здоровый человеческий организм обладает 46 хромосомами. Генов же в нем в тысячи раз больше. Судите сами: каждый ген отвечает за тот или иной признак, проявляющийся во внешнем облике человека. Естественно, их очень много. Поэтому стали говорить о том, что несколько генов локализуются в одной хромосоме. Называются эти гены группой сцепления и определяют сцепленное наследование. Подобная теория витала в научной среде довольно долгое время, однако лишь Т. Морган дал ей определение.

В отличие от наследования генов, которые локализованы в разных парах одинаковых хромосом, сцепленное наследование обусловливает образование дигетерозиготной особью только двух типов гамет, повторяющих комбинацию родительских генов.

Наряду с этим возникают гаметы, комбинация генов в которых отличается от хромосомного набора родителей. Этот результат является следствием кроссинговера - процесса, важность которого в генетике переоценить сложно, поскольку он позволяет потомству получить различные признаки от обоих родителей.

В природе существуют три типа наследования генов. Для того чтобы определить, какой тип присущ именно данной их паре, применяют В результате обязательно получится один из трех вариантов, приведенных ниже:

1. Независимое наследование. В подобном случае гибриды отличаются друг от друга и от родителей по внешнему виду, иначе говоря, в результате мы имеем 4 варианта фенотипов.

2. Полное сцепление генов. Гибриды первого поколения, получившиеся при скрещивании родительских особей, полностью повторяют фенотип родителей и неотличимы между собой.

3. Неполное сцепление генов. Так же, как и в первом случае, при скрещивании получается 4 класса различных фенотипов. При этом, однако, происходит образование новых генотипов, полностью отличных от родительского фонда. Именно в таком случае в процесс образования гамет вмешивается кроссинговер, упомянутый выше.

Также установлено, что, чем меньше расстояние между наследуемыми генами в родительской хромосоме, тем выше вероятность их полного сцепленного наследования. Соответственно, чем дальше друг от друга они располагаются, тем реже происходит перекрест при мейозе. Расстояние между генами - фактор, в первую очередь определяющий вероятность сцепленного наследования.

Отдельно необходимо рассмотреть сцепленное наследование, связанное с полом. Суть его та же, что и при варианте, рассмотренном выше, однако наследуемые гены в данном случае расположены в половых хромосомах. Поэтому говорить о таком типе наследования можно лишь в случае млекопитающих (человек в их числе), некоторых пресмыкающихся и насекомых.

Принимая во внимание факт того, что XY - это набор хромосом, соответствующий мужскому полу, а XX - женскому, отметим, что все основные признаки, отвечающие за жизнеспособность организма, расположены в хромосоме, присутствующей в генотипе каждого организма. Конечно, речь идет о Х - хромосоме. У женских особей могут наличествовать как рецессивные, так и в хромосомах. Мужские же могут наследовать лишь один из вариантов - то есть либо ген проявляет себя в фенотипе, либо нет.

Сцепленное наследование, обусловленное полом, часто звучит в контексте заболеваний, которые свойственны именно мужчинам, в то время как женщины являются лишь их носителями:

  • гемофилия,
  • дальтонизм;
  • синдром Леша - Найхана.

1. У человека имеется два вида слепоты, и каждая определяется своим рецессивным аутосомным геном, которые не сцеплены. Какова вероятность рождения слепого ребенка, если отец и мать страдают одним и тем же видом слепоты и оба дигомозиготны? Какова вероятность рождения слепого ребенка, если оба родителя дигомозиготны и страдают разными видами наследственной слепоты?

Объяснение:

Первое скрещивание:

Р: ААвв х ААвв

Г: Ав х Ав

F1: ААвв - слепой ребенок.

Проявляется закон единообразия. Вероятность рождения слепого ребенка - 100%.

Второе скрещивание:

Р: ААвв х ааВВ

Г: Ав х аВ

F1: АаВв - здоровый ребенок.

Проявляется закон единообразия. Оба вида слепоты отсутствуют. Вероятность рождения слепого ребенка - 0%.

2. У человека дальтонизм обусловлен сцепленным с Х-хромосомой рецессивным геном. Талассемия наследуется как аутосомный доминантный признак и наблюдается в двух формах: у гомозигот - тяжелая, часто смертельная, у гетерозигот - в легкой форме.

Женщина с легкой формой талассемии и нормальным зрением в браке с мужчиной-дальтоником, но здоровым по гену талассемии, имеет сына-дальтоника с легкой формой талассемии. Какова вероятность рождения у этой пары детей с обеими аномалиями? Определите генотипы и фенотипы возможного потомства.

Объяснение:

Р: АаХDХd х ааХdУ

Г: АХD, аХd, AXd, aXD х аХd, аУ

F1: АаХdУ - мальчик-дальтоник с легкой формой талассемии

AaXDXd - девочка с нормальным зрением и легкой формой талассемии

aaXdXd - девочка-дальтоник без талассемии

AaXdXd - девочка-дальтоник с легкой формой талассемии

aaXDХd - девочка с нормальным зрением без талассемии

AaXDY - мальчик с нормальным зрением и легкой формой талассемии

aaXdY - мальчик-дальтоник без талассемии

aaXDY - мальчик с нормальным зрением и без талассемии

То есть получается восемь вариантов генотипа с равной вероятностью появления. Вероятность рождения ребенка с легкой формой талассемии и дальтонизмом составляет 2/8 или 25% (12,5% вероятность рождения мальчика и 12,5% - рождения девочки). Вероятность рождения ребенка-дальтоника с тяжелой формой талассемии - 0%.

3. В брак вступили голубоглазый светловолосый мужчина и дигетерозиготная кареглазая темноволосая женщина. Определите генотипы супружеской пары, а также возможные генотипы и фенотипы детей. Установите вероятность рождения ребенка с дигомозиготным генотипом.

Объяснение: А - карие глаза

а - голубые глаза

В - темные волосы

в - светлые волосы

Р: аавв х АаВв

Г: ав х АВ, ав, Ав, аВ

F1: АаВв - карие глаза, темные волосы

аавв - голубые глаза, светлые волосы

Аавв - карие глаза, светлые волосы

ааВв - голубые глаза, темные волосы

Вероятность рождения ребенка с каждым из генотипов - 25%. (и вероятность рождения ребенка с дигомозиготным генотипом (аавв) - 25%)

Признаки не сцеплены с полом. Здесь проявляется закон независимого наследования.

4. При скрещивании серой (а) мохнатой крольчихи с черным мохнатым кроликом в потомстве наблюдалось расщепление: крольчата черные мохнатые и серые мохнатые. Во втором скрещивании фенотипически таких же кроликов получилось потомство: крольчата черные мохнатые, черные гладкошерстные, серые мохнатые, серые гладкошерстные. Какой закон наследственности проявляется в данных скрещиваниях?

Объяснение:

А - черная окраска

а - серая окраска

В - мохнатый кролик

в - гладкошерстный кролик

Первое скрещивание:

Р: ааВВ х АаВВ

F1: АаВВ - черные мохнатые крольчата

ааВВ - серые мохнатые крольчата

Второе скрещивание:

Р: ааВв х АаВв

Г: аВ, ав х АВ, ав, Ав, аВ

F1: получается 8 генотипов и 4 фенотипа

АаВВ, 2АаВв - серые мохнатые крольчата

Аавв - черные гладкошерстные крольчата

ааВВ, ааВв - серые мохнатые крольчата

аавв - серые гладкошерстные крольчата

В данном случае действует закон независимого наследования, так как представленные признаки наследуются независимо.

5. Для хохлатой (А) зеленой (В) самки провели анализирующее скрещивание, в потомстве получилось четыре фенотипических класса. Получившихся хохлатых потомков скрестили между собой. Может ли в этом скрещивании получить потомство без хохолка? Если может, то какого оно будет пола, какого фенотипа? У канареек наличие хохолка зависит от аутосомного гена, окраска оперения (зеленое или коричневое) - от гена, сцепленного с Х-хромосомой. Гетерогаметным полом у птиц является женский пол.

Объяснение:

Первое скрещивание:

Р: АаХВУ х ааХвХв

Г: АХВ, аХВ, АУ, аУ х аХв

F1: АаХВХв - хохлатый зеленый самец

ааХВХв - зеленый самец без хохолка

АаХвУ - хохлатая коричневая самка

Скрещиваем самца и самку с хохолком:

Р: АаХВХв х АаХвУ

Г: АХВ, АХв, аХВ, аХв х АХв, АУ, аХв, аУ

F2: получаем 16 генотипов, среди которых можно выделить только 4 фенотипа.

Фенотипы особей без хохолка:

Самки: ааХВУ - зеленая самка без хохолка

ааХвУ - коричневая самка без хохолка

Самцы: ааХВХв - зеленый самец без хохолка

ааХвХв - коричневый самец без хохолка.

6. В скрещивании самок дрозофил с нормальными крыльями и нормальными глазами и самцов с редуцированными крыльями и маленькими глазами все потомство имело нормальные крылья и нормальные глаза. Получившихся в первом поколении самок возвратно скрещивали с исходной родительской особью. Форма крыльев у дрозофилы определяется аутосомным геном, ген размера глаз находится в Х-хромосоме. Составьте схемы скрещиваний, определите генотипы и фенотипы родительских особей и потомства в скрещиваниях. Какие законы действуют в скрещиваниях?

Объяснение:

А - нормальные крылья

а - редуцированные крылья

ХВ - нормальные глаза

Первое скрещивание:

Р: ААХВХВ х ввХвУ

Г: АХВ х аХв, аУ

АаХВХв - нормальные крылья, нормальные глаза

АаХВУ - нормальные крылья, нормальные глаза

Второе скрещивание:

Р: АаХВХв х ааХвН

Г: АХВ, аХв, АХв, аХв х аХв, аУ

АаХВХв, АаХВУ - нормальные крылья, нормальные глаза

ааХвХв, ааХвУ - редуцированные крылья, маленькие глаза

АаХвХв, АаХвУ - нормальные крылья, маленькие глаза

ааХВХв, ааХВУ - редуцированные крылья, нормальные глаза

Здесь действует закон сцепленного с полом наследования (ген формы глаз наследуется с Х-хромосомой), а ген крыльев наследуется независимо.

7. При скрещивании мухи дрозофилы, имеющей серое тело (А) и нормальные крылья (В), с мухой, имеющей черное тело и закрученные крылья, получено 58 мух с серым телом и нормальными крыльями, 52 - с черным телом и закрученными крыльями, 15 - с серым телом и закрученными крыльями, 14 - с черным телом и нормальными крыльями. Составьте схему решения задачи. Определите генотипы родительских особей, потомства. Объясните формирование четырех фенотипических классов. Какой закон действует в данном случае?

Объяснение: А - серое тело

а - черное тело

В - нормальные крылья

в - закрученные крылья

Скрещивание: Р: АаВв х аавв

Г: АВ, ав, Ав, аВ х ав

F1: АаВв - серое тело, нормальные крылья - 58

аавв - черное тело, закрученные крылья - 52

Аавв - серое тело, закрученные крылья - 15

ааВв - черное тело, нормальные крылья - 14

Гены А и В и а и в сцеплены, поэтому они они образуют группы 58 и 52 особи, а в случае остальных двух групп произошел кроссинговер и эти гены перестали быть сцеплены, поэтому и образовали 14 и 15 особей.

8. При анализирующем скрещивании дигетерозиготного высокого с круглыми плодами растения томата получено расщепление потомства по фенотипу: 38 растений высоких с округлыми плодами, 10 - высоких с грушевидными плодами, 10 - карликовых с округлыми плодами, 42 - карликовых с грушевидными плодами. Составьте схему скрещивания, определите генотипы и фенотипы исходных особей, потомства. Объясните формирование четырех фенотипических классов.

Объяснение:

А - высокое растение

а - карликовое растение

В - круглые плоды

в - грушевидные плоды

Р: АаВв х аавв

G: АВ, ав, аВ, Ав х ав

F1: АаВв - высокие растения с круглыми плодами - 38

аавв - карликовые растения с грушевидными плодами - 42

ааВв - карликовые растения с круглыми плодами - 10

Аавв - высокие растения с грушевидными плодами - 10

Здесь можно выделить две группы признаков:

1. АаВв и аавв - в первом случае наследуются сцепленно А и В, а во втором - а и в.

2. ааВв и Аавв - здесь произошел кроссинговер.

9. У человека нерыжие волосы доминируют над рыжими. Отец и мать гетерозиготные рыжие. У них восемь детей. Сколько среди них может оказаться рыжих? Есть ли однозначный ответ на этот вопрос?

Объяснение: А - нерыжие волосы

а - рыжие волосы

Р: Аа х Аа

Г: А, а х А, а

F1: АА: 2Аа: аа

Расщепление по генотипу - 1:2:1.

Расщепление по фенотипу - 3:1. Следовательно, вероятность рождения нерыжего ребенка - 75%. Вероятность рождения рыжего ребенка - 25%.

Однозначного ответа на вопрос нет, так как невозможно предположить генотип будущего ребенка, так как могут встретиться половые клетки с разными генотипами.

10. Определите генотипы родителей в семье, где все сыновья дальтоники, а дочери здоровы.

Объяснение: XDXd - здоровая девочка

XdY - мальчик - дальтоник

Такая ситуация будет более возможна если мать-дальтоник (так как женский пол гомогаметный), а отец - здоров (гетерогаметный пол).

Напишем схему скрещивания.

P: XdXd x XDY

G: Xd x XD, Y

F1: XDXd - девочка здоровая, но носитель гена дальтонизма.

XdY - мальчик-дальтоник

11. У человека глаукома наследуется как аутосомно-рецессивный признак (а), а синдром Марфана, сопровождающийся аномалией в развитии соединительной ткани, - как аутосомно-доминантный признак (В). Гены находятся в разных парах аутосом. Один из супругов страдает глаукомой и не имел в роду предков с синдромом Марфана, а второй дигетерозиготен по данным признакам. Определите генотипы родителей, возможные генотипы и фенотипы детей, вероятность рождения здорового ребенка. Составьте схему решения задачи. Какой закон наследственности проявляется в данном случае?

Объяснение: глаукома - рецессивный признак и проявляется только при гомозиготе, а синдром Марфана проявляется как при гетеро-, так и при гомозиготе, но является доминантным признак, соответственно, определим генотипы родителей: один родитель страдает глаукомой - аа, но не страдает синдромом Марфана - вв, а второй родитель по обоим признакам гетерозиготен - АаВв.

Р: аавв х АаВв

G: ав х АВ, ав, Ав, аВ

F1: АаВв - нормальное зрение + синдром Марфана

аавв - глаукома

Аавв - нормальное зрение, нет синдрома Марфана - здоровый ребенок

ааВв - глаукома + синдром Марфана

Нарисовав решетку Пеннета, можно увидеть, что вероятность рождения каждого ребенка одинакова - 25%, значит и вероятность рождения здорового ребенка будет такая же.

Гены данных признаков не являются сцепленными, а значит проявляется закон независимого наследования.

12. Скрестили низкорослые (карликовые) растения томата с ребристыми плодами и растения нормальной высоты с гладкими плодами. В потомстве были получены две фенотипические группы растений: низкорослые и гладкими плодами и нормальной высоты с гладкими плодами. При скрещивании растений томата низкорослых с ребристыми плодами с растениями, имеющими нормальную высоту стебля и ребристые плоды, все потомство имело нормальную высоту стебля и ребристые плоды. Составьте схемы скрещивания. Определите генотипы родителей и потомства растений томата в двух скрещиваниях. Какой закон наследственности проявляется в данном случае?

Объяснение: в первом скрещивании дигомозигота скрещивается с гомозиготным растением по одному признаку и гетерозиготным по другому (чтобы это понять, нужно написать несколько вариантов, данное потомство получается только при таких родителях). во втором скрещивании все проще - скрещивается две дигомозиготы (только у второго родителя один признак будет доминантным).

а - низкорослые особи

А - нормальная высота

в - ребристые плоды

В - гладкие плоды

P: аавв х АаВВ

F1: ааВв - низкорослые особи с гладкими плодами

АаВв - нормальная высота, гладкие плоды

P: аавв х ААвв

F1: Аавв - нормальная высота, гладкие плоды.

В обоих случаях проявляется закон независимого наследования, так как эти два признака наследуются независимо.

13. По изображенной на рисунке родословной определите и объясните характер наследования признака, выделенного черным цветом. Определите генотипы родителей, потомков, обозначенных на схеме цифрами 2, 3, 8, и объясните их формирование.

Объяснение: так как в первом поколении мы видим единообразие, а во втором поколении - расщепление 1:1, делаем вывод, что оба родителя были гомозиготны, но один по рецессивному признаку, а другой - по доминантному. То есть в первом поколении все дети - гетерозиготны. 2 - Аа, 3 - Аа, 8 - аа.

14. При скрещивании пестрой хохлатой (В) курицы с таким же петухом было получено восемь цыплят: четыре цыпленка пестрых хохлатых, два - белых (а) хохлатых и два - черных хохлатых. Составьте схему решения задачи. Определите генотипы родителей и потомства, объясните характер наследования признаков и появление особей с пестрой окраской. Какие законы наследственности проявляются в данном случае?

Объяснение: такое расщепление возможно только если родители гетерозиготны по окраске, то есть пестрая окраска имеет генотип - Аа

АА - черная окраска

аа - белая окраска

Аа - пестрая окраска

P: АаВВ х АаВВ

G: АВ, аВ

F1: АаВВ - пестрый хохлатый (4 цыпленка)

ааВВ - белый хохлатый (два цыпленка)

ААВВ - черный хохлатый

По окраске расщепление по генотипу и фенотипу одинаковое: 1:2:1, так как здесь присутствует явление неполного доминирования (между и черной и белой окраской появляется промежуточный вариант), признаки наследуются независимо.

15. У человека ген нормального слуха (В) доминирует над геном глухоты и находится в аутосоме; ген цветовой слепоты (дальтонизм - d) рецессивный и сцеплен с Х-хромосомой. В семье, где мать страдала глухотой, но имела нормальное цветовое зрение, а отец - с нормальным слухом (гомозиготен), дальтоник, родилась девочка-дальтоник с нормальным слухом. Составьте схему решения задачи. Определите генотипы родителей, дочери, возможные генотипы детей и вероятность в будущем рождения в этой семье детей-дальтоников с нормальным слухом и глухих.

Объяснение: из условия задачи видно, что мать гетерозиготна по гену глухоты и гомозиготна по гену слепоты, а отец - имеет ген слепоты и гетерозиготен по гену глухоты. Тогда дочь будет гомозиготна по гену слепоты и гетерозиготна по гену глухоты.

P: (мать)XDXd x (отец)XdYBB

дочь - XdXdBb - дальтоник, слух нормальный

Гаметы - XDb, Xdb, XdB, YB

Дети: XDXdBb - нормальное зрение, нормальный слух

XDYBb - нормальное зрение, нормальный слух

XdXdBb - дальтоник, нормальный слух

XdYBb - дальтоник, нормальный слух

Расщепление: 1:1:1:1, то есть вероятность рождения дальтоника с нормальным слухом - 50%, а вероятность рождения глухих дальтоников - 0%.

16. У мужа и жены нормальное зрение, несмотря на то, что отцы обоих супругов страдают цветовой слепотой (дальтонизмом). Ген дальтонизма рецессивен и сцеплен с Х-хромосомой. Определите генотипы мужа и жены. Составьте схему решения задачи. Какова вероятность рождения у них сына с нормальным зрением, дочери с нормальным зрением, сына-дальтоника, дочери-дальтоника?

Объяснение: допустим матери мужа и жены были здоровы.

Распишем еще и возможные генотипы родителей мужа и жены.

P: XDXD x XdY XDXD x XdY

↓ ↓

XDXd x XDY

Возможные генотипы детей:

XDXD - здоровая девочка

XDY - здоровый мальчик

XDXd - здоровая девочка

XdY - мальчик-дальтоник

Вероятность рождения ребенка с каждым из генотипов равна 25%. Вероятность рождения здоровой девочки - 50% (в одном случае ребенок гетерозиготен, в другом - гомозиготен). Вероятность рождения девочки-дальтоника - 0%. Вероятность рождения мальчика-дальтоника - 25%.

17. У гороха посевного желтая окраска семян доминирует над зеленой, выпуклая форма плодов - над плодами с перетяжкой. При скрещивании растения с желтыми выпуклыми плодами с растением, имеющим желтые семена и плоды с перетяжкой, получили 63 растения с желтыми семенами и выпуклыми плодами. 58 - с желтыми семенами и плодами с перетяжкой, 18 - с зелеными семенами и выпуклыми плодами и 20 - с зелеными семенами и плодами с перетяжкой. Составьте схему решения задачи. Определите генотипы исходных растений и потомков. Объясните появление различных фенотипических групп.

Объяснение:

А - желтая окраска

а - зеленая окраска

В - выпуклая форма

в - плоды с перетяжкой

Внимательно прочитав условие задачи, можно понять, что одно родительское растение является дигетерозиготным, а второй - гомозиготно по форме плода, а гетерозиготно по цвету семени.

Напишем схему решения задачи:

P: АаВв х Аавв

G: АВ, ав, Ав, аВ х Ав, ав

F1: получается расщепление 3:1 и следующие потомки первого поколения:

63 - А_Вв - желтые семена, выпуклые плоды

58 - А_вв - желтые семена, плоды с перетяжкой

18 - ааВв - зеленые семена, выпуклая форма плода

20 - аавв - зеленые семена, плоды с перетяжкой

Здесь наблюдаем закон независимого наследования, так как каждый признак наследуется независимо.

18. У львиного зева красная окраска цветков неполно доминирует над белой, а узкие листья над широкими. Гены располагаются в разных хромосомах. Скрещиваются растения с розовыми цветками и листьями промежуточной ширины с растениями, имеющими белые цветки и узкие листья. Составьте схему решения задачи. Какое потомство и в каком соотношении можно ожидать от этого скрещивания? Определите тип скрещивания, генотипы родителей и потомства. Какой закон имеет место в данном случае.

Объяснение: АА - красная окраска

Аа - розовая окраска

аа - белая окраска

ВВ - узкие листья

Вв - листья промежуточной ширины

вв - широкие листья

Скрещивание:

Р: АаВв х ааВВ

Г: АВ, ав, Ав, аВ х аВ

F1: АаВВ - розовые цветки, узкие листья

ааВв - белые цветки, листья промежуточной ширины

АаВв - розовые цветки, листья промежуточной ширины

ааВВ - белые цветки, узкие листья

Вероятность появления цветков с каждым из генотипов - 25%.

Скрещивание дигибридное (так как анализ идет по двум признакам).

В данном случае действуют законы неполного доминирования и независимого наследования признаков.

Задания для самостоятельного решения

1. У собак черная шерсть доминирует над коричневой, а длинная шерсть над короткой (гены не сцеплены). От черной длинношерстной самки при анализирующем скрещивании получено потомство: 3 черных длинношерстных щенка, 3 коричневых длинношерстных. Определите генотипы родителей и потомства, соответствующие их фенотипам. Составьте схему решения задачи. Объясните полученные результаты.

2. У овец серая окраска (А) шерсти доминирует над черной, а рогатость (В) - над комолостью (безрогостью). Гены не сцеплены. В гомозиготном состоянии ген серой окраски вызывает гибель эмбрионов. Какое жизнеспособное потомство (по фенотипу и генотипу) и в каком соотношении можно ожидать от скрещивания дигетерозиготной овцы с гетерозиготным серым комолым самцом? Составьте схему решения хадачи. Объясните полученные результаты. Какой закон наследственности проявляется в данном случае?

3. У кукурузы рецессивный ген "укороченные междоузлия" (b) находится в одной хромосоме с рецессивным геном "зачаточная метелка" (v). При проведении анализирующего скрещивания дигетерозиготного растения, имеющего нормальные междоузлия и нормальную метелку, получено потомство: 48% с нормальными междоузлиями и нормальной метелкой, 48% с укороченными междоузлиями и зачаточной метелкой, 2% с нормальными междоузлиями и зачаточной метелкой, 2% с укороченными междоузлиями и нормальной метелкой. Определите генотипы родителей и потомства. Составьте схему решения задачи. Объясните полученные результаты. Какой закон наследственности проявляется в данном случае?

4. При скрещивании растения кукурузы с гладкими окрашенными семенами с растением, дающим морщинистые неокрашенные семена (гены сцеплены), потомство оказалось с гладкими окрашенными семенами. При анализирующем скрещивании гибридов из F1 получены растения с гладкими окрашенными семенами, с морщинистыми неокрашенными, с морщинистыми окрашенными, с гладкими неокрашенными. Составьте схему решения задачи. Определите генотипы родителей, потомства F1 и F2. Какие законы наследственности проявляются в данных скрещиваниях? Объясните появление четырех фенотипических групп особей в F2?

5. При скрещивании растения кукурузы с гладкими окрашенными семенами с растением, имеющим морщинистые неокрашенные семена (гены сцеплены), потомство оказалось с гладкими окрашенными семенами. При дальнейшем анализирующем скрещивании гибрида из F1 получены растения с семенами: 7115 с гладкими окрашенными, 7327 с морщинистыми неокрашенными, 218 с морщинистыми окрашенными, 289 с гладкими неокрашенными. Составьте схему решения задачи. Определите генотипы родителей, потомства F1, F2. Какой закон наследственности проявляется в F2? Объясните, на чем основан ваш ответ.

6. У человека катаракта (заболевание глаз) зависит от доминантного аутосомного гена, а ихтиоз (заболевание кожи) - от рецессивного гена, сцепленного с Х-хромосомой. Женщина со здоровыми глазами и с нормальной кожей, отец которой страдал ихтиозом, выходит замуж за мужчину, страдающего катарактой и со здоровой кожей, отец которого не имел этих заболеваний. Составьте схему решения задачи. Определите генотипы родителей, возможные генотипы и фенотипы детей. Какие законы наследственности проявляются в данном случае?

7. При скрещивании белых кроликов с мохнатой шерстью и черных кроликов с гладкой шерстью получено потомство: 50% черных мохнатых и 50% черных гладких. При скрещивании другой пары белых кроликов с мохнатой шерстью и черных кроликов с гладкой шерстью 50% потомства оказалось черных мохнатых и 50% - белых мохнатых. Составьте схему каждого скрещивания. Определите генотипы родителей и потомства. Объясните, какой закон проявляется в данном случае?

8. При скрещивании растения арбуза с длинными полосатыми плодами с растением, имеющим круглые зеленые плоды, в потомстве получили растения с длинными зелеными и круглыми зелеными плодами. При скрещивании такого же арбуза с длинными полосатыми плодами с растением, имеющим круглые полосатые плоды, все потомство имело круглые полосатые плоды. Составьте схему каждого скрещивания. Определите генотипы родителей и потомства. Как называется такое скрещивание и для чего оно проводится?

9. Темноволосая голубоглазая женщина, дигомозиготная, вступила в брак с темноволосым голубоглазым мужчиной, гетерозиготным по первой аллели. Темный цвет волос и карие глаза - это доминантные признаки. Определите генотипы родителей и потомства, типы гамет и вероятные генотипы детей.

10. Темноволосая женщина с кудрявыми волосами, гетерозиготная по первому признаку вступила в брак с мужчиной, имеющим темные шладкие волосы, гетерозиготным по первой аллели. Темные и кудрявые волосы - это доминантные признаки. Определите генотипы родителей, типы гамет, которые они вырабатывают, вероятные генотипы и фенотипы потомства.

11. Темноволосая кареглазая женщина, гетерозиготная по первой аллели вступила в брак со светловолосым кареглазым мужчиной, гетерозиготным по второму признаку. Темные волосы и карие глаза - доминантные признаки, светлые волосы и голубые глаза - рецессивные признаки. Определите генотипы родителей и гаметы, которые они вырабатывают, вероятные генотипы и фенотипы потомства.

12. Скрестили красноглазую серую (А) дрозофилу, гетерозиготную по двум аллелям, с красноглазой черной (ХВ) дрозофилой, гетерозиготной по первой аллели. Определите генотипы родителей, гаметы, которые они вырабатывают, численное соотношение расщепления потомства по генотипу и фенотипу.

13. Черную мохнатую крольчиху, гетерозиготную по двум аллелям скрестили с белым мохнатым кроликом, гетерозиготным по второй аллели. Черный мохнатый мех - доминантные признаки, белый гладкий мех - рецессивные признаки. Определите генотипы родителей и гаметы, которые они вырабатывают, численное соотношение расщепление потомства по фенотипу.

14. У матери 3-я группа крови и положительные резус-фактор, а у отца - 4-я группа крови и резус-фактор отрицательные. Определите генотипы родителей, гаметы, которые они вырабатывают, и возможные генотипы детей.

15. От черной кошки родился один черепаховый и несколько черных котят. Указанные признаки сцеплены с полом, то есть гены окраски находятся только в половых Х-хромосомах. Ген черной окраски и ген рыжей окраски дает неполное доминирование, при сочетании этих двух генов получается черепаховая окраска. Определите генотип и фенотип отца, гаметы, которые вырабатывают родители, пол котят.

16. Гетерозиготную серую самку дрозофилы скрестили с серым самцом. Указанные признаки сцеплены с полом, то есть гены находятся только в половых Х-хромосомах. Серая окраска тела доминирует над желтой. Определите генотипы родителей, гаметы. которые они вырабатывают, и численное расщепление потомства по полу и окраске тела.

17. У томата гены, обусловливающие высокий рост растения (А) и круглую форму плода (В), сцеплены и локализованы в одной хромосоме, а гены, обусловливающие низкий рост и грушевидную форму, - в аутосоме. Скрестили гетерозиготное растение томата, имеющее высокий рост и круглую форму плода, с низким грушеплодным растением. Определите генотипы и фенотипы потомства родителей, гаметы, образующиеся в мейозе, если перекреста хромосом не было.

18. У дрозофилы доминантные гены нормального крыла и серой окраски тела сцеплены и локализованы в одной хромосоме, а рецессивные гены зачаточности крыла и черной окраски тела - в другой гомологичной хромосоме. Скрестили двух дигетерозиготных дрозофил, имеющих нормальные крылья и серую окраску тела. Определите генотип родителей и гаметы, образующиеся без перекреста хромосом, а также численное соотношение расщепления потомства по генотипу и фенотипу.

19. Каковы генотипы родителей и детей, если у светловолосой матери и темноволосого отца в браке родилось пять детей, все темноволосые? Какой закон наследственности проявляется?

20. Каковы генотипы родителей и потомства, если от скрещивания коровы с красной окраской шерсти с черным быком все потомство получено черное? Определите доминантный и рецессивный гены и характер доминирования.

21. Какие фенотипы и генотипы возможны у детей, если у матери первая группа крови и гомозиготный резус-положительный фактор, а у отца четвертая группа крови и резус-отрицательный фактор (рецессивный признак)? Определите вероятность рождения детей с каждым из указанных признаков.

22. В семье родился голубоглазый ребенок, похожий по этому признаку на отца. Мать у ребенка кареглазая, бабушка по материнской линии - голубоглазая, а дедушка - кареглазый. По отцовской линии бабушка и дедушка - кареглазые. Определите генотипы родителей и бабушки с дедушкой по отцовской линии. Какова вероятность рождения в этой семье кареглазого ребенка?

23. Женщина со светлыми волосами и прямым носом вступила в брак с мужчиной, имеющим темные волосы и римский нос, гетерозиготный по первому признаку и гомозиготный по второму. Темные волосы и римский нос - доминантные признаки. Каковы генотипы и гаметы родителей? Каковы вероятные генотипы и фенотипы детей?

24. От черепаховой кошки родилось несколько котят, один из которых оказался рыжей кошкой. У кошек гены окраски шерсти сцеплены с полом и находятся только в Х-хромосомах. Черепаховая окраска шерсти возможна при сочетании гена черной и рыжей окраски. Определите генотипы родителей и фенотип отца, а также генотипы потомства.

25. Гетерозиготную серую самку дрозофилы скрестили с серым самцом. Определите гаметы, вырабатываемые родителями, а также численное соотношение расщепления гибридов по фенотипу (по полу и окраске тела) и генотипу. Указанные признаки сцеплены с полом и находятся только в Х-хромосомах. Серая окраска тела - доминантный признак.

26. У кукурузы доминантные гены коричневой окраски и гладкой формы семян сцеплены и локализованы в одной хромосоме, а рецессивные гены белой окраски и морщинистой формы - в другой гомологичной хромосоме. Какое по генотипу и фенотипу потомство следует ожидать при скрещивании дигетерозиготного растения с белыми гладкими семенами с растением, имеющим белые морщинистые семена. Кроссинговер в мейозе не произошел. Определите гаметы, вырабатываемые родителями.

27. У кукурузы доминантные гены коричневой окраски и гладкой формы семян сцеплены и локализованы в одной хромосоме, а рецессивные гены белой окраски и морщинистой формы - в другой гомологичной хромосоме. Какое по генотипу и фенотипу потомство следует ожидать при скрещивании дигетерозиготного растения с белыми гладкими семенами с гомозиготным растением, имеющим темные гладкие семена. В мейозе происходит кроссинговер. Определите гаметы, вырабатываемые родителями, без кроссинговера и после кроссинговера.

28. При скрещивании мохнатой белой крольчихи с мохнатым черным кроликом в потомстве появился один гладкий белый крольчонок. Определите генотипы родителей. В каком численном соотношении можно ожидать расщепление потомства по генотипу и фенотипу?

29. Охотник купил собаку, которая имеет короткую шерсть. Ему важно знать, что она чистопородна. Какие действия помогут охотнику определить, что его собака не несет рецессивных генов - длинной шерсти? Составьте схему решения задачи и определите соотношение генотипов потомства, полученного от скрещивания чистопородной собаки с гетерозиготной.

30. Мужчина страдает гемофилией. Родители его жены здоровы по этому признаку. Ген гемофилии (h) находится в половой Х-хромосоме. Составьте схему решения задачи. Определите генотипы супружеской пары, возможного потомства, вероятность рождения дочерей-носительниц этого заболевания.

31. Гипертрихоз передается у человека с У-хромосомой, а полидактилия (многопалость) - аутосомный доминантный признак. В семье, где отец имел гипертрихоз, а мать - полидактилию, родилась нормальная дочь. Составьте схему решения задачи и определите генотип рожденной дочери и вероятность того, что следующий ребенок будет с двумя аномальными признаками.

32. Скрестили дигетерозиготные растения томатов с округлыми плодами (А) и с опушенными листьями (В) с растениями, имеющими овальные плоды и неопушенный эпидермис листа. Гены, отвечающие за строение эпидермиса листа и форму плодов, наследуются сцепленно. Составьте схему решения задачи. Определите генотипы родителей, генотипы и фенотипы потомства, вероятность появления в потомстве растений с рецессивными признаками.

33. При скрещивании томата с пурпурным стеблем (А) и красными плодами (В) и томата с зеленым стеблем и красными плодами получили 750 растений с пурпурным стеблем и красными плодами и 250 растений с пурпурным стеблем и желтыми плодами. Доминантные гены пурпурной окраски стебля и красного цвета плодов наследуются независимо. Составьте схему решения задачи. Определите генотипы родителей, потомства в первом поколении и соотношение генотипов и фенотипов у потомства.

34. Растение дурман с пурпурными цветками (А) и гладкими коробочками (в) скрестили с растением, имеющим пурпурные цветки и колючие коробочки. В потомстве получены следующие фенотипы: с пурпурными цветками и колючими коробочками, с пурпурными цветками и гладкими коробочками, с белыми цветками и колючими коробочками, с белыми цветками и гладкими коробочками. Составьте схему решения задачи. Определите генотипы родителей, потомства и возможное соотношение фенотипов. Установите характер наследования признаков.

35. Скрестили два растения львиного зева с красными и белыми цветками. Их потомство оказалось с розовыми цветками. Определите генотипы родителей, гибридов первого поколения и тип наследования признаков.

36. Скрещивается коричневая (а) длинношерстная (в) самка с гомозиготным черным (А) короткошерстным (В) самцом (гены не сцеплены). Составьте схему решения задачи и определите генотипы и соотношение по фенотипу потомков их первого поколения. Каково соотношение генотипов и фенотипов второго поколения от скрещивания дигетерозигот. Какие генетические закономерности проявляются в этом скрещивании?

37. У свиней черная окраска щетины (А) доминирует над рыжей, длинная щетина (В) - над короткой (гены не сцеплены). Скрестили черного с длинной щетиной дигетерозиготного самца с гомозиготной черной с короткой щетиной самкой. Составьте схему решения задачи. Определите генотипы родителей, потомства, фенотипы потомства и их соотношение.

38. Отсутствие малых коренных зубов у человека наследуется как доминантный аутосомный признак. Определите генотипы и фенотипы родителей и потомства, если один из супругов имеет малые коренные зубы, а другой гетерозиготен по этому гену. Составьте схему решения задачи и определите вероятность рождения детей, у которых отсутствуют малые коренные зубы.

В 1906 году У. Бэтсон и Р. Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве, гибриды всегда повторяли признаки родительских форм. Стало ясно, что не для всех признаков характерно независимое распределение в потомстве и свободное комбинирование.

Каждый организм имеет огромное количество признаков, а число хромосом невелико. Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков. Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался Т. Морган . Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила.

Дрозофила каждые две недели при температуре 25 °С дает многочисленное потомство. Самец и самка внешне хорошо различимы — у самца брюшко меньше и темнее. Они имеют всего 8 хромосом в диплоидном наборе, достаточно легко размножаются в пробирках на недорогой питательной среде.

Скрещивая мушку дрозофилу с серым телом и нормальными крыльями с мушкой, имеющей темную окраску тела и зачаточные крылья, в первом поколении Морган получал гибриды, имеющие серое тело и нормальные крылья (ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев, — над геном недоразвитых). При проведении анализирующего скрещивания самки F 1 с самцом, имевшим рецессивные признаки, теоретически ожидалось получить потомство с комбинациями этих признаков в соотношении 1:1:1:1. Однако в потомстве явно преобладали особи с признаками родительских форм (41,5% — серые длиннокрылые и 41,5% — черные с зачаточными крыльями), и лишь незначительная часть мушек имела иное, чем у родителей, сочетание признаков (8,5% — черные длиннокрылые и 8,5% — серые с зачаточными крыльями). Такие результаты могли быть получены только в том случае, если гены, отвечающие за окраску тела и форму крыльев, находятся в одной хромосоме.

1 — некроссоверные гаметы; 2 — кроссоверные гаметы.

Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов — АВ и аb , а отцовский — один тип — аb . Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип ААВВ и ааbb . Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Ааbb и ааВb . Для того, чтобы объяснить это, необходимо вспомнить механизм образования половых клеток — мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют, и в этот момент между ними может произойти обмен участками. В результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В , появляются гаметы Аb и аВ , и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Но, поскольку кроссинговер происходит при образовании небольшой части гамет, числовое соотношение фенотипов не соответствует соотношению 1:1:1:1.

Группа сцепления — гены, локализованные в одной хромосоме и наследующиеся совместно. Количество групп сцепления соответствует гаплоидному набору хромосом.

Сцепленное наследование — наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот. Полное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным. Неполное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.

Независимое наследование — наследование признаков, гены которых локализованы в разных парах гомологичных хромосом.

Некроссоверные гаметы — гаметы, в процессе образования которых кроссинговер не произошел.

Нерекомбинанты — гибридные особи, у которых такое же сочетание признаков, как и у родителей.

Рекомбинанты — гибридные особи, имеющие иное сочетание признаков, чем у родителей.

Расстояние между генами измеряется в морганидах — условных единицах, соответствующих проценту кроссоверных гамет или проценту рекомбинантов. Например, расстояние между генами серой окраски тела и длинных крыльев (также черной окраски тела и зачаточных крыльев) у дрозофилы равно 17%, или 17 морганидам.

У дигетерозигот доминантные гены могут располагаться или в одной хромосоме (цис-фаза ), или в разных (транс-фаза ).

1 — Механизм цис-фазы (некроссоверные гаметы); 2 — механизм транс-фазы (некроссоверные гаметы).

Результатом исследований Т. Моргана стало создание им хромосомной теории наследственности :

  1. гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;
  2. каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;
  3. гены расположены в хромосомах в определенной линейной последовательности;
  4. гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;
  5. сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;
  6. каждый вид имеет характерный только для него набор хромосом — кариотип.

    Перейти к лекции №17 «Основные понятия генетики. Законы Менделя»

Г. Мендель проследил наследование семи пар признаков у гороха. Многие исследователи, повторяя опыты Менделя, подтвердили открытые им законы. Было признано, что эти законы носят всеобщий характер. Однако в 1906 г. английские генетики В.Бэтсон и Р.Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве. Потомки всегда повторяли признаки родительских форм. Стало ясно, что не для всех генов характерно независимое распределение в потомстве и свободное комбинирование.

Каждый организм имеет огромное количество признаков, а число хромосом невелико. Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков.


Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался выдающийся американский генетик Т. Морган. Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила. Мушка каждые две недели при температуре 25°С дает многочисленное потомство. Самец и самка внешне хорошо различимы - у самца брюшко меньше и темнее.

Кроме того, они имеют всего 8 хромосом в диплоидном наборе и отличия по многочисленным признакам, могут размножаться в пробирках на дешевой питательной среде.

Скрещивая мушку дрозофилу с серым телом и нормальными крыльями с мушкой, имеющей темную окраску тела и зачаточные крылья, в первом поколении Морган получал гибридов, имеющих серое тело и нормальные крыльяи (ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев - над геном недоразвитых) (рис. 327). При проведении анализирующего скрещивания самки F 1 с самцом, имевшим рецессивные признаки, теоретически ожидалось получить потомство с комбинациями этих признаков в соотношении 1:1:1:1. Однако в потомстве явно преобладали особи с признаками родительских форм (41,5% серые длиннокрылые и 41,5% черные с зачаточными крыльями) и лишь незначительная часть мушек имела перекомбинированные признаки (8,5% черные длиннокрылые и 8,5% серые с зачаточными крыльями).

Анализируя полученные результаты, Морган пришел к выводу, что гены, обусловливающие развитие серой окраски тела и длинных крыльев, локализованы в одной хромосоме, а гены, обусловливающие развитие черной окраски тела и зачаточных крыльев, - в другой. Явление совместного наследования признаков Морган назвал сцеплением . Материальной основой сцепления генов является хромосома. Гены, локализованные в одной хромосоме, наследуются совместно и образуют одну группу сцепления . Поскольку гомологичные хромосомы имеют одинаковый набор генов, количество групп сцепления равно гаплоидному набору хромосом (например, у человека 46 хромосом, или 23 пары гомологичных хромосом, соответственно количество групп сцепления в соматических клетках человека - 23). Явление совместного наследования генов, локализованных в одной хромосоме, называют сцепленным наследованием. Сцепленное наследование генов, локализованных в одной хромосоме, называют законом Моргана.

Вернемся к нашему примеру скрещивания мушек дрозофил. Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов - АВ и ав, а отцовский - один тип - ав . Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип ААВВ и аавв . Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Аавв и ааВв . Каковы причины появления таких особей? Для объяснения этого факта необходимо вспомнить механизм образования половых клеток - мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют, и в этот момент между ними может произойти обмен участками. В результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В, появляются гаметы Ав и аВ, и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Но поскольку кроссинговер происходит не во всех гаметах, числовое соотношение фенотипов не соответствует соотношению 1:1:1:1.

В зависимости от особенностей образования гамет, различают:

некроссоверные гаметы - гаметы с хромосомами, образованными без кроссинговера:
кроссоверные гаметы - гаметы с хромосомами, претерпевшими кроссинговер:

Соответственно этому различают:

© рекомбинантные (кроссоверные ) особи - особи, возникшие с участием кроссоверных гамет;

© нерекомбинантные (некроссоверные ) особи - особи, возникшие без участия кроссоверных гамет.

Гены в хромосомах имеют разную силу сцепления. Сцепление генов может быть:

© полным , если между генами, относящимися к одной группе сцепления, рекомбинация невозможна (у самцов дрозофилы полное сцепление генов, хотя у подавляющего большинства других видов кроссинговер протекает сходно как у самцов, так и у самок);

© неполным , если между генами, относящимися к одной группе сцепления, возможна рекомбинация.

Вероятность возникновения перекреста между генами зависит от их расположения в хромосоме: чем дальше друг от друга расположены гены, тем выше вероятность перекреста между ними. За единицу расстояния между генами, находящимися в одной хромосоме, принят 1 % кроссинговера. Его величина зависит от силы сцепления между генами и соответствует проценту рекомбинантных особей от общего числа потомков, полученных при скрещивании. Например, в рассмотренном выше анализирующем скрещивании получено 17% особей с перекомбинированными признаками. Следовательно, расстояние между генами серой окраски тела и длинных крыльев (а также черной окраски тела и зачаточных крыльев) равно 17%. В честь Т. Моргана единица расстояния между генами названа морганидой .

Результатом исследований Т.Моргана стало создание им хромосомной теории наследственности:

© гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов, причем набор генов каждой из негомологичных хромосом уникален;

© каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;

© гены расположены в хромосомах в определенной линейной последовательности;

© гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;

© сцепление генов может нарушаться в процессе кроссинговера; это приводит к образованию рекомбинатных хромосом; частота кроссинговера:

¨ является функцией расстояния между генами: чем больше расстояние, тем больше величина кроссинговера (прямая зависимость);

¨ зависит от силы сцепления между генами: чем сильнее сцеплены гены, тем меньше величина кроссинговера (обратная зависимость);

© каждый вид имеет характерный только для него набор хромосом - кариотип.

40.4. Генетика пола

Как известно, большинство животных и двудомных растений являются раздельнополыми организмами, причем внутри вида количество особей мужского пола приблизительно равно количеству особей женского пола.

Пол можно рассматривать как один из признаков организма. Наследование признаков организма, как правило, определяется генами. Механизм же определения пола имеет иной характер - хромосомный (рис. 328).

Пол чаще всего определяется в момент оплодотворения. У человека женский пол является гомогаметным, то есть все яйцеклетки несут Х-хромосому. Мужской организм - гетерогаметен, то есть образует два типа гамет - 50% гамет несет Х-хромосому и 50% - Y-хромосому. Если

образуется зигота, несущая две Х-хромосомы, то из нее будет формироваться женский организм, если Х-хромосому и Y-хромосому - мужской.

Соотношение полов, близкое к расщеплению 1:1, соответствует расщеплению при анализирующем скрещивании. Поскольку женский организм имеет две одинаковые половые хромосомы, его можно рассматривать как гомозиготный, мужской, образующий два типа гамет - как гетерозиготный.

Из приведенной схемы видно, как происходит формирование в равных количествах двух групп особей, отличающихся набором половых хромосом.

Существует четыре основных типа хромосомного определения пола (рис. 329):

© мужской пол гетерогаметен; 50% гамет несут Х-, 50% -У-хромосому;

© мужской пол гетерогаметен; 50% гамет несут Х-, 50% -не имеют половой хромосомы;

© женский пол гетерогаметен; 50% гамет несут Х-, 50% -У-хромосому;

© женский пол гетерогаметен; 50% гамет несут Х-, 50% - не имеют половой хромосомы.

40.5. Наследование признаков,
сцепленных с полом

Генетические исследования установили, что половые хромосомы отвечают не только за определение пола организма - они, как и аутосомы, содержат гены, контролирующие развитие определенных признаков.

Наследование признаков, гены которых локализованы в Х- или Y-хромосомах, называют наследованием, сцепленным с полом.

Изучением наследования генов, локализованных в половых хромосомах, занимался Т.Морган.

У дрозофилы красный цвет глаз доминирует над белым. Проводя реципрокное скрещивание, Т.Морган получил весьма интересные результаты. При скрещивании красноглазых самок с белоглазыми самцами, в первом поколении все потомство оказывалось красноглазым. Если скрестить между собой гибридов F 1 , то во втором поколении все самки оказываются красноглазыми, а у самцов происходит расщепление - 50% белоглазых и 50% красноглазых. Если же скрестить между собой белоглазых самок и красноглазых самцов, то в первом поколении все самки оказываются красноглазыми, а самцы белоглазыми. В F 2 половина самок и самцов - красноглазые, половина - белоглазые.

Объяснить полученные результаты наблюдаемого расщепления по окраске глаз Т.Морган смог, только предположив, что ген, отвечающий за окраску глаз, локализован в Х-хромосоме, а Y-хромосома таких генов не содержит.

Таким образом, благодаря проведенным скрещиваниям, был сделан очень важный вывод: ген цвета глаз сцеплен с полом, то есть находится в Х-хромосоме.

У человека мужчина получает Х-хромосому от матери. Половые хромосомы человека имеют небольшие гомологичные участки, несущие одинаковые гены (например, ген общей цветовой слепоты), это участки конъюгации (рис. 330). Но большинство генов, сцепленных с Х-хромосомой, отсутствуют в У-хромосоме, поэтому эти гены (даже рецессивные) будут проявляться фенотипически, так как они представлены в генотипе в единственном числе. Такие гены получили название гемизиготных .

Х-хромосома человека содержит ряд генов, рецессивные аллели которых определяют развитие тяжелых аномалий (гемофилия, дальтонизм). Эти аномалии чаще встречаются у мужчин (так как они гетерогаметны), хотя носителем этих аномалий чаще бывает женщина.

У большинства организмов генетически активна только Х-хромосома, в то время как Y-хромосома практически инертна, так как не содержит генов, определяющих признаков организма. У человека лишь некоторые гены, не являющиеся жизненно важными, локализованы в Y-хромосоме (например, гипертрихоз - повышенная волосатость ушной раковины). Гены, локализованные в Y-хромосоме, наследуются особым образом - только от отца к сыну.

Полное сцепление с полом наблюдается лишь в том случае, если Y-хромосома генетически инертна. Если же в Y-хромосоме имеются гены, аллельные генам Х-хромосомы, характер наследования признаков иной. Например, если мать имеет рецессивные гены, а отец доминантные, то все потомки первого поколения будут гетерозиготны с доминантным проявлением признака. В следующем поколении получится обычное расщепление 3:1, причем с рецессивными признаками будут только девочки. Такой тип наследования называют частично сцепленным с полом . Так наследуются некоторые признаки человека (общая цветовая слепота, кожный рак).

40.6. Генотип целостная,
исторически сложившаяся система генов.

Изучая закономерности наследования, Г.Мендель исходил из предположения, что один ген отвечает за развитие только одного признака. Например, ген, отвечающий за развитие окраски семян гороха, не влияет на форму семян. Причем эти гены располагаются в разных хромосомах, и их наследование независимо друг от друга. Поэтому может сложиться впечатление, что генотип представляет собой простую совокупность генов организма. Однако сам Мендель в ряде опытов столкнулся с явлениями наследования, которые не могли быть объяснены с помощью открытых им закономерностей. Так, при изучении наследования окраски семенной кожуры, Мендель обнаружил, что ген, вызывающий образование бурой семенной кожуры, способствует также развитию пигмента и в других частях растения. Растения с бурой семенной кожурой имели цветки фиолетовой окраски, а растения с белой семенной кожурой - белые цветки. В других опытах, проводя скрещивание белой и пурпурной фасоли, он получил во втором поколении целый ряд оттенков - от пурпурного до белого. Мендель пришел к заключению, что наследование пурпурного цвета зависит не от одного, а от нескольких генов, каждый из которых дает промежуточную окраску. Можно говорить о том, что Мендель не только установил законы независимого наследования пар аллелей, но и заложил основы учения о взаимодействии генов.

После переоткрытия законов наследования признаков, многочисленные опыты подтвердили правильность установленных Менделем закономерностей. Вместе с тем, постепенно накапливались и факты, показывающие, что полученные Менделем числовые соотношения при расщеплении гибридного поколения не всегда соблюдались. Это указывало на то, что взаимоотношения между генами и признаками носят более сложный характер. Выяснилось, что:

© один и тот же ген может оказывать влияние на развитие нескольких признаков;

© один и тот же признак может развиваться под влиянием многих генов.

Различают несколько типов взаимодействия аллельных генов:

© Полное доминирование , при котором рецессивный признак не проявляется;

© Неполное доминирование , при котором у гибридов наблюдается промежуточный характер наследования.

© Кодоминирование , в этом случае у гибридов проявляются оба признака. Например, кодоминирование проявляется у людей с 4 группой крови. Первая группа крови у людей с аллелями i O i O , вторая - с аллелями I A I A или I A í 0 ; третья - I В I В или I В í 0 ; четвертая группа имеет аллели I А I В.

Известно много примеров, когда гены влияют на характер проявления определенного неаллельного гена или на саму возможность проявления этого гена.

Комплементарными называют гены, обусловливающие при совместном сочетании в генотипе в гомозиготном или гетерозиготном состоянии новое фенотипическое проявление признака.

Классическим примером комплементарного взаимодействия генов является наследование формы гребня у кур (рис. 331). При скрещивании кур, имеющих розовидный и гороховидный гребень, все первое поколение имеет ореховидный гребень. При скрещивании гибридов первого поколения у потомков наблюдается расщепление по форме гребня: 9 ореховидных: 3 розовидных: 3 гороховидных: 1 листовидный. Генетический анализ показал,

что куры с розовидным гребнем имеют генотип А_bb , с гороховидным - ааВ_ , с ореховидным - А_В_ и с листовидным - ааbb , то есть развитие розовидного гребня происходит в том случае, если в генотипе имеется только один доминантный ген - А , гороховидного - наличие только гена В , сочетание генов А В обусловливает появление ореховидного гребня, а сочетание рецессивных аллелей этих генов - листовидного.

При комплементарном взаимодействии генов в дигибридном скрещивании получаются расщепления потомков отличные от менделевского: 9:7, 9:3:4, 13:3, 12:3:1, 15:1, 10:3:3, 9:6:1. Однако все они являются видоизменениями общей менделевской формулы 9:3:3:1.

Белое оперение определяется несколькими различными генами, например, у белых леггорнов - генамиССII , а у белых плимутроков - ccii (рис. 332). Доминантная аллель гена С определяет синтез предшественника пигмента (хромогена, обеспечивающего окраску пера), а его рецессивная аллель с - отсутствие хромогена. Ген I является подавителем действия гена С , а аллель i не подавляет его действия. Таким образом, белая окраска у кур определяется не наличием особых генов, определяющих развитие этой окраски, а наличием гена, подавляющего ее развитие.

При скрещивании, например, леггорнов (ССII )с плимутроками (ссii ), все потомство F 1 имеет белую окраску, которая определяется наличием в их генотипе гена-подавителя (СсIi ). Если же гибридов F 1 скрестить между собой, то во втором поколении происходит расщепление по окраске в отношении 13/16 белых: 3/16 окрашенных. Окрашенным оказывается та часть потомства, в генотипе которой имеется ген окраски и отсутствует его подавитель (С_ii ).

Скрещивая белую и пурпурную фасоли, Мендель столкнулся с явлением полимерии. Полимерией называют однозначное влияние двух, трех и более неаллельных генов на разви-

тие одного и того же признака. Такие гены называют полимерными , или множественными , и обозначают одной буквой с соответствующим индексом, например, А 1 , А 2 , а 1 , а 2 .

Полимерные гены контролируют большинство оличественных признаков организмов: высоту растения, массу семян, масличность семян, содержание сахара в корнеплодах сахарной свеклы, удойность коров, яйценоскость, вес тела и т.д.

Явление полимерии было открыто в 1908 г. при изучении окраски зерновки у пшеницы Нельсоном-Эле (рис. 333). Он предположил, что наследование окраски у зерновки пшеницы обусловлено двумя или тремя парами полимерных генов. При скрещивании краснозерной и белозерной пшеницы в F 1 наблюдалось промежуточное наследование признака: все гибриды первого поколения имели светло-красное зерно. В F 2 происходило расщепление в отношении 63 краснозерных на 1 белозерное. Причем краснозерные зерновки имели разную интенсивность окраски - от темно-красной до светло-красной. Исходя из наблюдений, Нельсоном-Эле определил, что признак окраски зерновок обуславливает три пары полимерных генов.

У человека по типу полимерии наследуется, например, окраска кожи.

Плейотропией называют множественное действие генов. Плейотропное действие генов имеет биохимическую природу: один белок-фермент, образующийся под контролем одного гена, определяет не только развитие данного признака,нои воздействует на вторичные реакции биосинтеза различных других признаков и свойств, вызывая их изменение.

Плейотропное действие генов впервые было обнаружено Г. Менделем, который обнаружил, что у растений с пурпурными цветками всегда имелись красные пятна в пазухах листьев, а семенная кожура была серого или бурого цвета. То есть развитие этих признаков определяется действием одного наследственного фактора (гена).

У человека встречается рецессивная наследственная болезнь-серповидно-клеточная анемия. Первичным дефектом этой болезни является замена одной из аминокислот в молекуле гемоглобина, что приводит к изменению формы эритроцитов. Одновременно с этим возникают глубокие нарушения в сердечно-сосудистой, нервной, пищеварительной, выделительной системах. Это приводит к тому, что гомозиготный по этому заболеванию погибает в детстве.

Плейотропия широко распространена. Изучение действия генов показало, что плейотропным эффектом, очевидно, обладают многие, если не все, гены.

Таким образом, выражение «ген определяет развитие признака» в значительной степени условно, так как действие гена зависит от других генов - от генотипической среды. На проявление действия генов влияют и условия окружающей внешней среды. Следовательно, генотип является системой взаимодействующих генов.

Генетика человека

Каждый крупный этап развития генетики был связан с использованием определенных объектов для генетических исследований. Теория гена и основные закономерности наследования признаков были установлены на опытах с горохом, для обоснования хромосомной теории наследственности использовалась мушка дрозофила, для становления молекулярной генетики - вирусы и бактерии. В настоящее время главным объектом генетических исследований становится человек.

Для генетических исследований человек является очень неудобным объектом, так как у человека:

© большое количество хромосом;

© невозможно экспериментальное скрещивание;

© поздно наступает половая зрелость;

© малое число потомков в каждой семье;

© невозможно уравнивание условий жизни для потомства.

Однако, несмотря на эти трудности, генетика человека достаточно хорошо изучена. Это оказалось возможным благодаря использованию разнообразных методов исследования.

Генеалогический метод. Использование этого метода возможно лишь в том случае, когда известны прямые родственники - предки обладателя наследственного признака (пробанда) по материнской и отцовской линиям в ряду поколений или потомки пробанда также в нескольких поколениях. При составлении родословных в генетике используется определенная система обозначений (рис. 334). После составления родословной проводится ее анализ с

целью установления характера наследования изучаемого признака.

Благодаря генеалогическому методу, было установлено, что у человека наблюдаются все типы наследования признаков, известные для других организмов, и определены типы наследования некоторых конкретных признаков. Так, по ауто сомно-доминантному типу наследуются полидактилия (увеличенное количество пальцев) (рис. 335), возможность свертывать язык в трубочку (рис. 336), брахидактилия (короткопалось, обусловленная отсутствием двух фаланг на пальцах), веснушки, раннее облысение, сросшиеся пальцы, заячья губа, волчья пасть, катаракта глаз, хрупкость костей и многие другие. Альбинизм, рыжие волосы, подверженность полиомиелиту, сахарный диабет, врожденная глухота и другие признаки наследуются как аутосомно-рецессивные.

Целый ряд признаков наследуется сцепленно с полом: Х-сцепленное наследование - гемофилия, дальтонизм; У-сцепленное - гипертрихоз (повышенного оволосения ушной раковины), перепонки между пальцами. Имеется ряд генов, лока-

лизованных в гомологичных участках Х- и У-хромосомы, например общая цветовая слепота.

Установлением типа наследования признаков значение метода не ограничивается. Использование генеалогического метода показало, что при родственном браке, по сравнению с неродственным, значительно возрастает вероятность появления уродств, мертворождений, ранней смертности в потомстве. В родственных браках рецессивные гены чаще переходят в гомозиготное состояние, в результате развиваются те или иные аномалии. Ярким примером этого является наследование гемофилии в царских домах Европы.

Большую роль в изучении наследственности человека и влиянии условий среды на формирование признаков играет близнецовый метод .

Близнецами называют одновременно родившихся детей. Они бывают монозиготными (однояйцевыми) и дизиготными (разнояйцевыми) (рис. 337).

Монозиготные близнецы развиваются из одной зиготы, которая на стадии дробления разделилась на две (или более) частей. Поэтому такие близнецы генетически идентичны и всегда одного пола. Монозиготные близнецы характеризуются большой степенью сходства (конкордантностью ) по многим признакам.


Дизиготные близнецы развиваются из одновременно овулировавших и оплодотворенных разными сперматозоидами яйцеклеток. Поэтому они наследственно различны и могут быть как одного, так и или разного пола. В отличие от монозиготных, дизиготные близнецы часто характеризуются дискордантностью - несходством по многим признакам. Данные о конкордантности близнецов по некоторым признакам приведены в таблице.

Таблица 9.

Конкордантность некоторых признаков человека

Как видно из таблицы, степень коркондантности монозиготных близнецов по всем приведенным признакам значительно выше, чем у дизиготных, однако она не является абсолютной. Как правило, дискордантность однояйцевых близнецов возникает в результате нарушений внутриутробного развития одного из них или под влиянием внешней среды, если она была разной.

Благодаря близнецовому методу, была выяснена наследственная предрасположенность человека к ряду заболеваний: шизофрении, умственной отсталости, эпилепсии, сахарного диабета и других.

Наблюдения за однояйцевыми близнецами дают материал для выяснения роли наследственности и среды в развитии признаков. Причем под внешней средой понимают не только физические факторы среды, но и

социальные условия.

Цитогенетический метод основан на изучении хромосом человека в норме и при патологии. В норме кариотип человека включает 46 хромосом - 22 пары аутосом и две половые хромосомы. Использование данного метода позволило выявить группу болезней, связанных либо с изменением числа хромосом, либо с изменениями их структуры. Такие болезни получили название хромосомных. К их числу относятся: синдром Клайнфельтера, синдром Шерешевского-Тернера, трисомия Х, синдром Дауна, синдром Патау, синдром Эдвардса и другие.

Больные с синдромом Клайнфельтера (47,ХХУ) всегда мужчины. Они характеризуются недоразвитием половых желез, дегенерацией семенных канальцев, часто умственной отсталостью, высоким ростом (за счет непропорционально длинных ног).

Синдром Шерешевского-Тернера (45,Х0) наблюдается у женщин. Он проявляется в замедлении полового созревания, недоразвитии половых желез, аменорее (отсутствии менструаций), бесплодии. Женщины с синдромом Шерешевского-Тернера имеют малый рост, тело диспропорционально - более развита верхняя часть тела, плечи широкие, таз узкий - нижние конечности укорочены, шея короткая со складками, "монголоидный" разрез глаз и ряд других признаков.

Синдром Дауна - одна из самых часто встречающихся хромосомных болезней. Она развивается в результате трисомии по 21 хромосоме (47, 21,21,21). Болезнь легко диагностируется, так как имеет ряд характерных признаков: укороченные конечности, маленький череп, плоское, широкое переносье, узкие глазные щели с косым разрезом, наличие складки верхнего века, психическая отсталость. Часто наблюдаются и нарушения строения внутренних органов.

Хромосомные болезни возникают и в результате изменения самих хромосом. Так, делеция 5-й хромосомы приводит к развитию синдрома "крик кошки". У детей с этим синдромом нарушается строение гортани, и они в раннем детстве имеют своеобразный "мяукающий" тембр голоса. Кроме того, наблюдается отсталость психомоторного развития и слабоумие. Делеция 21 хромосомы приводит к возникновению одной из форм белокровия.

Чаще всего хромосомные болезни являются результатом мутаций, произошедших в половых клетках одного из родителей.

Биохимический метод позволяет обнаружить нарушения в обмене веществ, вызванные изменением генов и, как следствие, изменением активности различных ферментов. Наследственные болезни обмена веществ подразделяются на болезни углеводного обмена (сахарный диабет), обмена аминокислот, липидов, минералов и др.

Фенилкетонурия относится к болезням аминокислотного обмена. Блокируется превращение незаменимой аминокислоты фенилаланин в тирозин, при этом фенилаланин превращается в фенилпировиноградную кислоту, которая выводится с мочой. Заболевание приводит к быстрому развитию слабоумия у детей. Ранняя диагностика и диета позволяют приостановить развитие заболевания.

Генетика человека - одна из наиболее интенсивно развивающихся отраслей науки. Она является теоретической основой медицины, раскрывает биологические основы наследственных заболеваний. Знание генетической природы заболеваний позволяет вовремя поставить точный диагноз и осуществить нужное лечение.

Генетика популяций

Популяция - это совокупность особей одного вида, длительное время обитающих на определенной территории, свободно скрещивающихся друг с другом, имеющих общее происхождение, определенную генетическую структуру и в той или иной степени изолированных от других таких совокупностей особей данного вида. Популяция не только единица вида, форма его существования, но и единица эволюции. В основе микроэволюционных процессов, завершающихся видообразованием, лежат генетические преобразования в популяциях.

Изучением генетической структуры и динамики популяций занимается особый раздел генетики - популяционная генетика .

С генетической точки зрения, популяция является открытой системой, а вид - закрытой. В общей форме процесс видообразования сводится к преобразованию генетически открытой системы в генетически закрытую.

Каждая популяция имеет определенный генофонд и генетическую структуру. Генофондом популяции называют совокупность генотипов всех особей популяции. Под генетической структурой популяции понимают соотношение в ней различных генотипов и аллелей.

Одними из основных понятий популяционной генетики являются частота генотипа и частота аллеля. Под частотой генотипа (или аллеля ) понимают его долю, отнесенную к общему количеству генотипов (или аллелей) в популяции. Частота генотипа, или аллеля, выражается либо в процентах, либо в долях единицы (если общее количество генотипов или аллелей популяции принимается за 100% или 1). Так, если ген имеет две аллельные формы и доля рецессивного аллеля а составляет ¾ (или 75%), то доля доминантного аллеля А будет равна ¼ (или 25%) общего числа аллелей данного гена в популяции.

Большое влияние на генетическую структуру популяций оказывает способ размножения. Например, популяции самоопыляющихся и перекрестноопыляющихся растений существенно отличаются друг от друга.

Впервые исследование генетической структуры популяции было предпринято В.Иоганнсеном в 1903 г. В качестве объектов исследования были выбраны популяции самоопыляющихся растений. Исследуя в течение нескольких поколений массу семян у фасоли, он обнаружил, что у самоопылителей популяция состоит из генотипически разнородных групп, так называемых чистых линий , представленных гомозиготными особями. Причем из поколения в поколение в такой популяции сохраняется равное соотношение гомозиготных доминантных и гомозиготных рецессивных генотипов. Их частота в каждом поколении увеличивается, в то время как частота гетерозиготных генотипов будет уменьшаться. Таким образом, в популяциях самоопыляющихся растений наблюдается процесс гомозиготизации, или разложения на линии с различными генотипами.

Большинство растений и животных в популяциях размножаются половым путем при свободном скрещивании, обеспечивающем равновероятную встречаемость гамет. Равновероятную встречаемость гамет при свободном скрещивании называют панмиксией , а такую популяцию - панмиктической .

Харди и Вайнберг, суммируя данные о частоте генотипов, образующихся в результате равновероятной встречаемости гамет, вывели формулу частоты генотипов в панмиктической популяции:

P 2 + 2pq + q 2 = 1.

АА + 2Аа + аа = 1

Однако действие этого закона выполняется при соблюдении следующих условий:

© неограниченно большая численность популяции;

© все особи могут свободно скрещиваться друг с другом;

© все генотипы одинаково жизнеспособны, плодовиты и не подвергаются отбору;

© прямые и обратные мутации возникают с одинаковой частотой или настолько редко, что ими можно пренебречь;

© отток или приток новых генотипов в популяцию отсутствует.

В реально существующих популяциях выполнение этих условий невозможно, поэтому закон справедлив только для идеальной популяции. Несмотря на это, закон Харди-Вайнберга является основой для анализа некоторых генетических явлений, происходящих в природных популяциях. Например, если известно, что фенилкетонурия встречается с частотой 1:10000 и наследуется по аутосомно-рецессивному типу, можно посчитать частоту встречаемости гетерозигот и гомозигот по доминантному признаку. Больные фенилкетонурией имеют генотип q 2 (аа) = 0,0001. Отсюда q = 0,01. p = 1 - 0,01 = 0,99. Частота встречаемости гетерозигот равна 2pq , равна 2 х 0,99 х 0,01 ≈ 0,02 или около 2%. Частота встречаемости гомозигот по доминантному и рецессивному признакам: АА = p 2 = 0,99 2 ≈ 98%, аа = 0,01%.

Изменение равновесия генотипов и аллелей в панмиктической популяции происходит под влиянием постоянно действующих факторов, к которым относятся:

© мутационный процесс;

© популяционные волны;

© изоляция;

© естественный отбор;

© дрейф генов и другие.

Именно благодаря этим явлениям возникает элементарное эволюционное явление - изменение генетического состава популяции, являющееся начальным этапом процесса видообразования.

Изменчивость

Генетика изучает не только наследственность, но и изменчивость организмов. Изменчивостью называют способность живых организмов приобретать новые признаки и свойства. Благодаря изменчивости, организмы могут приспосабливаться к изменяющимся условиям среды обитания.

Различают два типа изменчивости:

© наследственную , или генотипическую , - изменения признаков организма, обусловленные изменением генотипа; она бывает:

¨ комбинативной - возникающей в результате перекомбинации хромосом в процессе полового размножения и участков хромосом в процессе кроссинговера;

¨ мутационной - возникающей в результате внезапного изменения состояния генов;

© ненаследственную , или фенотипическую , - изменчивость, при которой изменений генотипа не происходит.

Мутационная изменчивость

Наследственные изменения генетического материала теперь называют мутациями. Мутации - внезапные изменения генетического материала, приводящие к изменению тех или иных признаков организмов.

Термин "мутация" впервые ввел в науку голландский генетик Г. де-Фриз. Проводя опыты с энотерой (декоративное растение), он случайно обнаружил экземпляры, отличающиеся рядом признаков от остальных (большой рост, гладкие, узкие и длинные листья, красные жилки листьев и широкая красная полоса на чашечке цветка и т.д.). Причем при семенном размножении растения из поколения в поколение стойко сохраняли эти признаки. В результате обобщения своих наблюдений де-Фриз создал мутационную теорию, основные положения которой не утратили своего значения и по сей день:

© мутации возникают внезапно, скачкообразно, без всяких переходов;

© мутации наследственны, т.е. стойко передаются из поколения в поколение;

© мутации не образуют непрерывных рядов, не группируются вокруг среднего типа (как при модификационной изменчивости), они являются качественными изменениями;

© мутации ненаправленны - мутировать может любой локус, вызывая изменения как незначительных, так и жизненно важных признаков в любом направлении;

© одни и те же мутации могут возникать повторно;

© мутации индивидуальны, то есть возникают у отдельных особей.

Процесс возникновения мутаций называют мутагенез , организмы, у которых произошли мутации, - мутантами , а факторы среды, вызывающие появление мутаций, - мутагенными .

Способность к мутированию - одно из свойств гена. Каждая отдельная мутация вызывается какой-то причиной, как правило, связанной с изменениями во внешней среде.

Существует несколько классификаций мутаций:

© Мутации по месту их возникновения:

¨ Генеративные - возникшие в половых клетках. Они не влияют на признаки данного организма, а проявляются только в следующем поколении.

¨ Соматические - возникающие в соматических клетках. Эти мутации проявляются у данного организма и не передаются потомству при половом размножении (черное пятно на фоне коричневой окраски шерсти у каракулевых овец). Сохранить соматические мутации можно только путем бесполого размножения (прежде всего вегетативного).

© Мутации по адаптивному значению:

¨ Полезные - повышающие жизнеспособность особей.

¨ Вредные :

§ летальные - вызывающие гибель особей;

§ полулетальные - снижающие жизнеспособность особи (у мужчин рецессивный ген гемофилии носит полулетальный характер, а гомозиготные женщины оказываются нежизнеспособными).

¨ Нейтральные - не влияющие на жизнеспособность особей.

Эта классификация весьма условна, так как одна и та же мутация в одних условиях может быть полезной, а в других - вредной.

© Мутации по характеру проявления:

¨ доминантные , которые могут делать обладателей этих мутаций нежизнеспособными и вызывать их гибель на ранних этапах онтогенеза (если мутации являются вредными);

¨ рецессивные - мутации, не проявляющиеся у гетерозигот, поэтому длительное время сохраняющиеся в популяции и образующие резерв наследственной изменчивости (при изменении условий среды обитания носители таких мутаций могут получить преимущество в борьбе за существование).

© Мутации по степени фенотипического проявления:

¨ крупные - хорошо заметные мутации, сильно изменяющие фенотип (махровость у цветков);

¨ малые - мутации, практически не дающие фенотипического проявления (незначительное удлинение остей у колоса).

© Мутации по изменению состояния гена:

¨ прямые - переход гена от дикого типа к новому состоянию;

¨ обратные - переход гена от мутантного состояния к дикому типу.

© Мутации по характеру их появления:

¨ спонтанные - мутации, возникшие естественным путем под действием факторов среды обитания;

¨ индуцированные - мутации, искусственно вызванные действием мутагенных факторов.

© Мутации по характеру изменения генотипа:

¨ генны;

¨ хромосомные;

¨ геномные .

Генными мутациями называют изменения структуры молекулы ДНК на участке определенного гена, кодирующего структуру определенной молекулы белка. Эти мутации влекут за собой изменение строения белков, то есть появляется новая последовательность аминокислот в полипептидной цепи, в результате чего происходит изменение функциональной активности белковой молекулы. Благодаря генным мутациям происходит возникновение серии множественных аллелей одного и того же гена. Чаще всего генные мутации происходят в результате:

© замены одного или нескольких нуклеотидов на другие;

© вставки нуклеотидов;

© потери нуклеотидов;

© удвоения нуклеотидов;

© изменения порядка чередования нуклеотидов.

Хромосомные мутации

Хромосомные мутации - мутации, вызывающие изменения структуры хромосом. Они возникают в результате разрыва хромосом с образованием "липких" концов, "Липкие" концы - это одноцепочечные фрагменты на концах двухцепочечной молекулы ДНК. Эти фрагменты способны соединяться с другими фрагментами хромосом, также имеющих "липкие" концы. Перестройки могут осуществляться как в пределах одной хромосомы - внутрихромосомные мутации, так и между негомологичными хромосомами - межхромосомные мутации.

© Внутрихромосомные мутации:

¨ делеция - утрата части хромосомы (АВСD ® AB);

¨ инверсия - поворот участка хромосомы на 180˚(ABCD ® ACBD);

¨ дупликация - удвоение одного и того же участка хромосомы; (ABCD ® ABCBCD);

© Межхромосомные мутации:

¨ транслокация - обмен участками между негомологичными хромосомами (АВCD ® AB34).

Геномные мутации

Геномными называют мутации, в результате которых происходит изменение в клетке числа хромосом. Геномные мутации возникают в результате нарушения митоза или мейоза, приводящих либо к неравномерному расхождению хромосом к полюсам клетки, либо к удвоению хромосом, но без деления цитоплазмы.

В зависимости от характера изменения числа хромосом, различают:

¨ Гаплоидию - уменьшение числа полных гаплоидных наборов хромосом.

¨ Полиплоидию - увеличение числа полных гаплоидных наборов хромосом. Полиплоидия чаще наблюдается у простейших и у растений. В зависимости от числа гаплоидных наборов хромосом, содержащихся в клетках, различают: триплоиды (3n), тетраплоиды (4n) и т.д. Они могут быть:

§ автополиплоидами - полиплоидами, возникающими в результате умножения геномов одного вида;

§ аллополиплоидами - полиплоидами, возникающими в результате умножения геномов разных видов (характерно для межвидовых гибридов).

¨ Гетероплоидию (анеуплоидия ) - некратное увеличение или уменьшение числа хромосом. Чаще всего наблюдается уменьшение или увеличение числа хромосом на одну (реже две и более). Вследствие нерасхождения какой-либо пары гомологичных хромосом в мейозе одна из образовавшихся гамет содержит на одну хромосому меньше, а другая - на одну больше. Слияние таких гамет с нормальной гаплоидной гаметой при оплодотворении приводит к образованию зиготы с меньшим или большим числом хромосом по сравнению с диплоидным набором, характерным для данного вида. Среди анеуплоидов встречаются:

§ трисомики - организмы с набором хромосом 2n+1;

§ моносомики - организмы с набором хромосом 2n -1;

§ нулесомики - организмы с набором хромосом 2n –2.

Например, болезнь Дауна у человека возникает в результате трисомии по 21-й паре хромосом.

Н.И. Вавилов, изучая наследственную изменчивость у культурных растений и их предков, обнаружил ряд закономерностей, которые позволили сформулировать закон гомологических рядов наследственной изменчивости: «Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и виды, тем полнее сходство в рядах их изменчивости. Целые семейства растений в общем характеризуются определенным циклом изменчивости, проходящей через все роды и виды, составляющие семейство».

Этот закон можно проиллюстрировать на примере семейства Мятликовые, к которому относятся пшеница, рожь, ячмень, овес, просо и т.д. Так, черная окраска зерновки обнаружена у ржи, пшеницы, ячменя, кукурузы и других растений, удлиненная форма зерновки - у всех изученных видов семейства. Закон гомологических рядов в наследственной изменчивости позволили самому Н.И.Вавилову найти ряд форм ржи, ранее не известных, опираясь на наличие этих признаков у пшеницы. К ним относятся: остистые и безостые колосья, зерновки красной, белой, черной и фиолетовой окраски, мучнистое и стекловидное зерно и т.д.

Открытый Н.И.Вавиловым закон справедлив не только для растений, но и для животных. Так, альбинизм встречается не только в разных группах млекопитающих, но и птиц, и других животных. Короткопалость наблюдается у человека, крупного рогатого скота, овец, собак, птиц, отсутствие перьев у птиц, чешуи у рыб, шерсти у млекопитающих и т.д.

Закон гомологических рядов наследственной изменчивости имеет огромное значение для селекционной практики. Он позволяет предугадать наличие форм, не обнаруженных у данного вида, но характерного для близкородственных видов, то есть закон указывает направление поисков. Причем искомая форма может быть обнаружена в дикой природе или получена путем искусственного мутагенеза. Например, в 1927 г. немецкий генетик Э.Баур, исходя из закона гомологических рядов, высказал предположение о возможном существовании безалкалоидной формы люпина, которую можно было бы использовать на корм животным. Однако такие формы не были известны. Было высказано предположение, что безалкалоидные мутанты менее устойчивы к вредителям, чем растения горького люпина, и большая их часть погибает еще до цветения.

Опираясь на эти предположения, Р.Зенгбуш начал поиски безалкалоидных мутантов. Он исследовал 2,5 млн. растений люпина и выявил среди них 5 растений с низким содержанием алкалоидов, которые явились родоначальниками кормового люпина.

Более поздние исследования показали действие закона гомологических рядов на уровне изменчивости морфологических, физиологических и биохимических признаков самых разных организмов - от бактерий до человека.

В природе постоянно идет спонтанный мутагенез. Однако спонтанные мутации - редкое явление. Например, у дрозофилы мутация белых глаз образуется с частотой 1:100000 гамет, у человека многие гены мутируют с частотой 1:200000 гамет.

В 1925 г. Г.А.Надсон и Г.С.Филиппов открыли мутагенный эффект лучей радия на наследственную изменчивость у клеток дрожжей. Особое значение для развития искусственного мутагенеза имели работы Г.Меллера (1927), которые не только подтвердили мутагенный эффект лучей радия в опытах на дрозофилах, но и показали, что облучение увеличивает частоту мутаций в сотни раз. В 1928 г. Л.Стадлер использовал для получения мутаций рентгеновские лучи. Позже был доказан и мутагенный эффект химических веществ. Эти и другие эксперименты показали существование большого количества факторов, называемых мутагенными , способных вызывать мутации у различных организмов.

Все применяемые для получения мутаций мутагены делятся на две группы:

© физические - радиация, высокая и низкая температура, механическое воздействие, ультразвук;

© химические - различные органические и неорганические соединения: кофеин, иприт, соли тяжелых металлов, азотистая кислота и т.д.

Индуцированный мутагенез имеет большое значение. Он дает возможность создания ценного исходного материала для селекции, сотен высокопродуктивных сортов растений и пород животных, повышения в 10-20 раз продуктивности ряда продуцентов биологически активных веществ, а также раскрывает пути создания средств защиты человека от действия мутагенных факторов.

Модификационная изменчивость

Большую роль в формировании признаков организмов играет среда его обитания. Каждый организм развивается и обитает в определенной среде, испытывая на себе действие ее факторов, способных изменять морфологические и физиологические свойства организмов, т.е. ихфенотип.

Классическим примером изменчивости признаков под действием факторов внешней среды является разнолистность у стрелолиста: погруженные в воду листья имеют лентовидную форму, листья, плавающие на поверхности воды, - округлую, а находящиеся в воздушной среде, - стреловидные. Если же все растение оказывается полностью погруженным в воду, его листья только лентовидные. Некоторые виды саламандр темнеют на темном грунте и светлеют на светлом. Под действием ультрафиолетовых лучей у людей (если они не альбиносы) возникает загар в результате накопления в коже меланина, причем у разных людей интенсивность окраски кожи различна. Если же человек лишен действия ультрафиолетовых лучей, изменение окраски кожи у него не происходит.

Таким образом, изменения ряда признаков организмов вызывается действием факторов внешней среды. Причем эти изменения не наследуются. Так, если получить потомство от тритонов, выращенных на темном грунте, и поместить их на светлый, то все они будут иметь светлую окраску, а не темную, как их родители. Или, собрав семена со стрелолиста, выросшего в условиях полного погружения в воду, и высадив их в мелком водоеме, мы получим растения, листья которых будут иметь форму в зависимости от условий среды (лентовидные, округлые, стреловидные). То есть, данный вид изменчивости не затрагивает генотип и поэтому не передается потомкам.

Изменчивость организмов, возникающая под влиянием факторов внешней среды и не затрагивающая генотипа, называется модификационной .

© Модификационная изменчивость носит групповой характер , то есть все особи одного вида, помещенные в одинаковые условия, приобретают сходные признаки. Например, если сосуд с эвгленами зелеными поместить в темноту, то все они утратят зеленую окраску, если же вновь выставить на свет - все опять станут зелеными.

© Модификационная изменчивость является определенной , то есть всегда соответствует факторам, которые ее вызывают. Так, ультрафиолетовые лучи изменяют окраску кожи человека (так как усиливается синтез пигмента), но не изменяют пропорций тела, а усиленные физические нагрузки влияют на степень развития мышц, а не на цвет кожи.

Однако не следует забывать, что развитие любого признака определяется прежде всего генотипом. Вместе с тем, гены определяют возможность развития признака, а его появление и степень выраженности во много м определяется условиями среды. Так, зеленая окраска растений зависит не только от генов, контролирующих синтез хлорофилла, но и от наличия света. При отсутствии света хлорофилл не синтезируется.

Несмотря на то, что под влиянием условий внешней среды признаки могут изменяться, эта изменчивость не беспредельна. Даже в случае нормального развития признака степень его выраженности различна. Так, на поле пшеницы можно обнаружить растения с крупными колосьями (20 см и более) и очень мелкими (3-4 см). Это объясняется тем, что генотип определяет определенные границы, в пределах которых может происходить изменение признака. Степень варьирования признака, или пределы модификационной изменчивости, называют нормой реакции. Норма реакции выражается в совокупности фенотипов организмов, формирующихся на основе определенного генотипа под влиянием различных факторов среды. Как правило, количественные признаки (высота растений, урожайность, размер листьев, удойность коров, яйценоскость кур) имеют более широкую норму реакции, то есть могут изменяться в широких пределах, нежели качественные признаки (цвет шерсти, жирность молока, строение цветка, группа крови).

Знание нормы реакции имеет большое значение для практики сельского хозяйства

Таким образом, модификационная изменчивость характеризуется следующими основными свойствами:

© ненаследуемость;

© групповой характер изменений;

© соответствие изменений действию фактора среды;

Статистические закономерности модификационной изменчивости

© зависимость пределов изменчивости от генотипа.

Модификационная изменчивость многих признаков растений, животных и человека подчиняется общим закономерностям. Эти закономерности выявляются на основании анализа проявления признака у группы особей (n ). Степень выраженности изучаемого признака у членов выборочной совокупности различна.

© Каждое конкретное значение изучаемого признака называют вариантой и обозначают буквой v.

© При изучении изменчивости признака в выборочной совокупности составляется вариационный ряд , в котором особи располагаются по возрастанию показателя изучаемого признака.

© Частота встречаемости отдельных вариант обозначается буквой p .

Рис. 338. Вариационная кривая.
На основании вариационного ряда строится вариационная кривая - графическое отображение частоты встречаемости каждой варианты (рис. 338).

Например, если взять 100 колосьев пшеницы (n ) и подсчитать число колосков в колосе, то это количество будет от 14 до 20 - это численное значение вариант (v ).

Вариационный ряд:

v = 14 15 16 17 18 19 20

Частота встречаемости каждой варианты

p = 2 7 22 32 24 8 5

Среднее значение признака встречается чаще, а вариации, значительно отличающиеся от него, - значительно реже. Это называется нормальным распределением . Кривая на графике бывает, как правило, симметричной. Вариации, как большие, чем средние, так и меньшие, встречаются одинаково часто.

где М - средняя величина признака, в числителе сумма произведений вариант на их частоту встречаемости, в знаменателе - количество вариант. Для данного признака среднее значение равно 17,13.

Знание закономерностей модификационной изменчивости имеет большое практическое значение, поскольку позволяет предвидеть и заранее планировать степень выраженности многих признаков организмов в зависимости от условий внешней среды.

Поделиться